Rút gọn:
\(\dfrac{\left(-2\right)^3.9^3.5^5.7.8}{3^6.4^4.25^3.14}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\dfrac{-4\cdot13\cdot9\cdot5}{3\cdot4\cdot5\cdot2\cdot13}=\dfrac{3}{2}\)
b: \(=\dfrac{1}{2}\cdot\dfrac{1}{3}\cdot5=\dfrac{5}{6}\)
\(\frac{2^3.3^3.5^3.7.8}{3.2^4.5^3.14}=\frac{2^3.3^3.5^3.7.2^3}{3.2^4.5^3.2.7}\)
\(=\frac{2^6.3^3.5^3.7}{2^5.3.5^3.7}=\frac{2.3^2.1.1}{1.1.1.1}=2.3^2\)
\(=2.9=18\)
\(\frac{2^3.3^3.5^3.7.8}{3.2^4.5^3.14}=\frac{1.3^2.1.1.8}{1.2.1.2}=\frac{3.3.4}{2.1}=\frac{3.3.2}{1}=18\)
\(\frac{2^3.3^3.5^3.7.8}{3.2^4.5^3.14}\)mk viết như vầy bn cố gắng hiểu nhé:.
23.33.53.7.8/ 3.24.53.14
= 23.33.53.7.8/3.24.53.7.2
=23.33.53.8/3.24.53.2
=23.33.53.23/24.2.53
= 23.23.33.53/ 24.2.53
= 26. 33.53/ 25. 53
= 25.2.33.53/25.53
= 2.33/1
= 2. 27/1
= 54/1 = 54
Thế nha bn, chúc bn học tốt!
b) \(\dfrac{6\cdot9-2\cdot17}{63\cdot3-119}\)
\(=\dfrac{2\left(3\cdot9-17\right)}{7\cdot\left(3\cdot9-17\right)}\)
\(=\dfrac{2}{7}\)
a) \(\dfrac{2^4\cdot5^2\cdot7}{2^3\cdot5\cdot7^2\cdot11}=\dfrac{2^3\cdot5\cdot10\cdot7}{2^3\cdot5\cdot7\cdot77}=\dfrac{10}{77}\)
\(\dfrac{2^3\cdot3^3\cdot5^3\cdot7\cdot8}{3\cdot2^4\cdot5^3\cdot14}=\dfrac{2^3\cdot3\cdot5^3\cdot7\cdot3^2\cdot8}{3\cdot2^3\cdot2\cdot5^3\cdot14}=\dfrac{7\cdot3^2\cdot8}{2\cdot14}=\dfrac{63\cdot8}{2\cdot14}=18=\dfrac{1386}{77}\)
\(N=1+\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^{100}\)
\(\Rightarrow2N=2+1+\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^{99}\)
\(\Rightarrow N=2N-N=2+1+\dfrac{1}{2}+...+\left(\dfrac{1}{2}\right)^{99}-1-\dfrac{1}{2}-...-\left(\dfrac{1}{2}\right)^{100}=2-\left(\dfrac{1}{2}\right)^{100}\)
\(N=1+\left(\dfrac{1}{2}\right)+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+...+\left(\dfrac{1}{2}\right)^{100}\)
\(\dfrac{1}{2}N=\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+\left(\dfrac{1}{2}\right)^4+...+\left(\dfrac{1}{2}\right)^{101}\)
\(\dfrac{1}{2}N-N=\left(\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+\left(\dfrac{1}{2}\right)^4+...+\left(\dfrac{1}{2}\right)^{101}\right)\)
\(-\left(1+\left(\dfrac{1}{2}\right)+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+...+\left(\dfrac{1}{2}\right)^{100}\right)\)
\(-\dfrac{1}{2}N=\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^{101}-1\)
\(N=\dfrac{-\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^{101}}{-\dfrac{1}{2}}\)
\(=\dfrac{-1.3^2.7.8}{7.2}=-18\)
\(=\dfrac{\left(-2\right)^2.\left(-2\right).9.9.9.5^2.5^2.5.7.8}{3^2.3^2.3^2.4.4^2.25.25.25.14}=\dfrac{-2.5.7.8}{4^2.14}=\dfrac{-560}{224}=\dfrac{-5}{2}\)