K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2022

Dễ thấy:

     \(VT\ge\left(x+y\right)^2+1-\dfrac{\left(x+y\right)^2}{4}=\dfrac{3\left(x+y\right)^2}{4}+1\)

Áp dụng Cô-si:

     \(\dfrac{3\left(x+y\right)^2}{4}+1\ge2\sqrt{\dfrac{3\left(x+y\right)^2}{4}.1}=\sqrt{3}\left|x+y\right|\ge\sqrt{3}\left(x+y\right)\)

Do đó:

     \(\left(x+y\right)^2+1-xy\ge\sqrt{3}\left(x+y\right),\forall x,y\in R\)

 

16 tháng 8 2021

\(xy\le\frac{\left(x+y\right)^2}{4}\)( bđt cauchy ) 

\(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}.\frac{y}{x}}=2\)( bđt cauchy ) 

\(\Rightarrow\frac{x}{y}+\frac{y}{x}+\frac{xy}{\left(x+y\right)^2}\ge2+\frac{\frac{\left(x+y\right)^2}{4}}{\left(x+y\right)^2}=2+\frac{1}{4}=\frac{9}{4}\)

4 tháng 9 2021

a) \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\)

\(\Leftrightarrow2x^2+2y^2\ge\left(x+y\right)^2\Leftrightarrow x^2+y^2\ge2xy\)

\(\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\left(đúng\right)\)

b) \(x^3+y^3\ge\dfrac{\left(x+y\right)^3}{4}\)

\(\Leftrightarrow4x^3+4y^3\ge\left(x+y\right)^3\Leftrightarrow3x^3+3y^3\ge3x^2y+3xy^2\)

\(\Leftrightarrow3x^2\left(x-y\right)-3y^2\left(x-y\right)\ge0\)

\(\Leftrightarrow3\left(x-y\right)\left(x^2-y^2\right)\ge0\Leftrightarrow3\left(x-y\right)^2\left(x+y\right)\ge0\left(đúng\right)\)

 

a: Ta có: \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\)

\(\Leftrightarrow2x^2+2y^2-x^2-2xy-y^2\ge0\)

\(\Leftrightarrow x^2-2xy+y^2\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\ge0\)(luôn đúng)

NV
26 tháng 3 2021

Ta sẽ chứng minh:

\(\sqrt{a^2+x^2}+\sqrt{b^2+y^2}\ge\sqrt{\left(a+b\right)^2+\left(x+y\right)^2}\)

Thật vậy, bình phương 2 vế, BĐT tương đương:

\(a^2+x^2+b^2+y^2+2\sqrt{a^2b^2+x^2y^2+a^2y^2+b^2x^2}\ge a^2+b^2+x^2+y^2+2ab+2xy\)

\(\Leftrightarrow\sqrt{a^2b^2+x^2y^2+a^2y^2+b^2x^2}\ge ab+xy\)

\(\Leftrightarrow a^2b^2+x^2y^2+a^2y^2+b^2x^2\ge a^2b^2+x^2y^2+2abxy\)

\(\Leftrightarrow a^2y^2+b^2x^2-2abxy\ge0\)

\(\Leftrightarrow\left(ay-bx\right)^2\ge0\) (luôn đúng)

Áp dụng:

\(VT=\sqrt{a^2+x^2}+\sqrt{b^2+y^2}+\sqrt{c^2+z^2}\)

\(VT\ge\sqrt{\left(a+b\right)^2+\left(x+y\right)^2}+\sqrt{c^2+z^2}\ge\sqrt{\left(a+b+c\right)^2+\left(x+y+z\right)^2}\) (đpcm)

NV
21 tháng 7 2021

Cả 4 đều không đúng:

A. Sai khi \(\left(a;b;c\right)=\left(0;1;1\right)\) và nhiều trường hợp khác 

A. Sai khi \(\left(a;b\right)=\left(1;1\right)\) và nhiều trường hợp khác

C. Sai khi \(\left(x;y\right)=\left(-1;-1\right)\) và nhiều trường hợp khác

D. Sai khi \(\left(x;y;z\right)=\left(-1;-1;1\right)\) và nhiều trường hợp khác

29 tháng 4 2019

cảm ơn bạn nhiều

23 tháng 10 2020

 ta có:\(\frac{\left(x\sqrt{y}+y\sqrt{x}\right)\cdot\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}=\frac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}=x-y\)

vậy.....

23 tháng 10 2020

\(\frac{\left(x\sqrt{y}+y\sqrt{x}\right).\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\)

\(=\frac{\sqrt{xy}.\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\)

\(=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)\)

\(=x-y\)( đpcm )

14 tháng 7 2016

Cô bố sung cách cm khác ở phân cuối của Ngọc. Cô thấy rằng nó logic hơn, vì phần lập luận dòng cuối của Ngọc có vẻ chưa rõ ràng :)

Sau khi biến đổi đc về dạng \(t^2+t-m\ge0\), áp dụng định lý về dấu tam thức bậc hai ta có:

\(\hept{\begin{cases}1>0\\\Delta< 0\end{cases}\Leftrightarrow1^2+4m< 0\Leftrightarrow m< -\frac{1}{4}}\)

Vậy m nguyên lớn nhất là  -1.

13 tháng 7 2016

Ta có : \(\left(x+1\right)\left(x+2\right)^2\left(x+3\right)\ge m\)

\(\Leftrightarrow\left[\left(x+1\right)\left(x+3\right)\right].\left(x+2\right)^2\ge m\)

\(\Leftrightarrow\left(x^2+4x+3\right)\left(x^2+4x+4\right)\ge m\)

Đặt \(t=x^2+4x+3\) \(\Rightarrow t\left(t+1\right)\ge m\Leftrightarrow t^2+t-m\ge0\)

\(\Leftrightarrow\left(t^2+2.t.\frac{1}{2}+\frac{1}{4}\right)-\left(m+\frac{1}{4}\right)\ge0\Leftrightarrow\left(t-\frac{1}{2}\right)^2-\left(m+\frac{1}{4}\right)\ge0\)

Ta có \(\left(t-\frac{1}{2}\right)^2\ge0\Rightarrow m+\frac{1}{4}\le0\Rightarrow m\le-\frac{1}{4}\)

Mà m là số nguyên lớn nhất nên m = -1.

Vậy m = -1 thoả mãn đề bài.