cho tam giác ABC vuông tại A có AB = 6 cm BC = 10 cm vẽ đường cao AH của tam giác ABC( H thuộc BC )
1 cm tam giác ABC đồng dạng tam giác hba
2 cm AB bình = BC.BH áp dụng tính HB
3 tia phân giác của góc B cắt AC tại K cmr AK.AC=AH.KC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta ABC\) và \(\Delta HBA\) có:
\(\widehat{BAC}=\widehat{AHB}=90^0\)
\(\widehat{B}\) chung
suy ra: \(\Delta ABC~\Delta HBA\)
\(\Rightarrow\)\(\frac{AB}{HB}=\frac{BC}{AB}\)
\(\Rightarrow\)\(AB^2=HB.BC\)
\(\Leftrightarrow\)\(6^2=HB.10\)
\(\Rightarrow\)\(HB=3,6\)
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc HBA chung
=>ΔHBA đồng dạng với ΔABC
b; Xét ΔABE vuông tại A và ΔACB vuông tại A có
góc ABE=góc ACB
=>ΔABE đồng dạng với ΔACB
=>AB/AC=AE/AB
=>AB^2=AE*AC
c: Xét ΔBHD vuông tại H và ΔBAE vuông tại A có
góc HBD=góc ABE
=>ΔBHD đồng dạng với ΔBAE
Tự vẽ hình nha
a) xét tam giác HAB và tam giác ABC
góc AHB = góc ABC
góc CAB : chung
Suy ra : tam giác AHB ~ tam giác ABC ( g-g )
b) Áp dụng định lí py - ta - go vào tam giác ABC ta được :
AC2 + AB2 = BC2
162 + 122 = BC2
400 = BC2
=> BC = \(\sqrt{400}\)= 20 ( cm )
ta có tam giác HAB ~ tam giác ABC ( câu a )
=> \(\frac{AH}{AC}=\frac{AB}{BC}hay\frac{AH}{16}=\frac{12}{20}\)
=> AH = \(\frac{12.16}{20}=9,6\)( cm )
Độ dài cạnh BH là
Áp dụng định lí py - ta - go vào tam giác HBA ta được :
AH2 + BH2 = AB2
BH2 = AB2 - AH2
BH2 = 122 - 9,62
BH2 = 51,84
=> BH = \(\sqrt{51,84}\) = 7,2 ( cm )
c) Vì AD là đường phân giác của tam giác ABC nên :
\(\frac{AB}{BD}=\frac{AC}{CD}\Leftrightarrow\frac{AB}{BC-CD}=\frac{AC}{CD}\)
<=> \(\frac{AB.CD}{CD\left(BC-CD\right)}=\frac{AC\left(BC-CD\right)}{CD\left(BC-CD\right)}\)
<=> AB.CD = AC(BC - CD)
hay 12CD = 16.20 - 16CD
<=> 12CD+ 16CD = 320
<=> 28CD = 320
<=> CD = \(\frac{320}{28}\approx11.43\left(cm\right)\)
Độ dài cạnh BD là :
BD = BC - CD
BD = 20 - \(\frac{320}{28}\)\(\approx\) 8,57 ( cm )
Cho hỏi đồng dạng là sao bạn???Tớ mới học lớp 7 thôi,nên chưa biết ^^
a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{B}\) chung
Do đó: ΔHBA\(\sim\)ΔABC(g-g)
1: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
=>BH/BA=BA/BC
=>BA^2=BH*BC
2: Xét ΔBAE vuông tại A và ΔBHI vuông tại H có
góc ABE=góc HBI
=>ΔBAE đồng dạng với ΔBHI
3: góc AEI=góc BEA=góc BIH
góc BIH=góc AIE
=>góc AEI=góc AIE
=>AE=AI
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHAB đồng dạng với ΔACB
b: BD/CD=AB/AC=3/4
=>S ABD/S ACD=3/4
c: BC=căn 12^2+16^2=20cm
BD/3=CD/4=20/7
=>BD=60/7cm
AH=12*16/20=9,6cm
a) Xét ΔHBA và ΔABC có
\(\widehat{B }\) chung
\(\widehat{BHA}=\widehat{BAC}\)=90o
=> ΔHBA ∼ ΔABC (gg)
b) xét ΔABC có \(\widehat{BAC} \)=90o
=> AC2+AB2=BC2 (đl pitago)
=>162+122=BC2
=> BC=20 cm
Ta có SΔABC=\(\dfrac{AB.AC}{2}=\dfrac{AH.BC}{2}\)
=> AB.AC=AH.BC
=>12.16=AH.20
=> AH=9.6
Xét ΔABH có \(\widehat{BHA}\)=90o
=> HA2+HB2=AB2 (đl pitago)
=>9.62 + HB2=122
=> HB=7.2 cm
c) Xét ΔABC có
AD là phân giác (D∈BC)
=> \(\dfrac{BD}{CD}=\dfrac{AB}{AC}=\dfrac{12}{16}=\dfrac{3}{4}\)(tc đường pg trong Δ)
=>\(\dfrac{BD}{BC-BD}=\dfrac{3}{4}\)=>\(\dfrac{BD}{20-BD}=\dfrac{3}{4}\)
=> BD=\(\dfrac{60}{7}\) cm
=> CD=20 - \(\dfrac{60}{7}\)=\(\dfrac{80}{7}\) cm
d) Xét ΔAHC có
KN // HC (MN//BC , K ∈ MN , H∈ BC,(K∈AH ,N∈AC))
=> \(\dfrac{AN}{AC}=\dfrac{AK}{AH}=\dfrac{KN}{HC}\)( hệ quả đl ta-lét)
=>\(\dfrac{AN}{AC}=\dfrac{3.6}{9.6}=\dfrac{KN}{HC}\)
Xét ΔABC có
MN// BC (M∈AB ,N∈AC)
=> \(\dfrac{AN}{AC}=\dfrac{MN}{BC}\)=>\(\dfrac{3.6}{9.6}=\dfrac{MN}{20}\) => MN =7.5 cm
KH=AH-KH =9.6-3.6=6 cm
Xét tg MNCB có MN//BC
=> tg MNCB là hình bình hành (dhnb)
có AH⊥BC => KH⊥BC (K∈AH)
=> SBMNC = \(\dfrac{KH.\left(MN+BC\right)}{2}\)=\(\dfrac{6.\left(7.5+20\right)}{2}\)=82.5cm2
1: Xét ΔABC vuông tại A và ΔHBA vuông tại H có \(\widehat{B}\) chung
Do đó: ΔABC\(\sim\)ΔHBA
2: Xét ΔABC vuông tại A có AH là đường cao
nên \(AB^2=BH\cdot BC\)
\(\Leftrightarrow BH=\dfrac{AB^2}{BC}=\dfrac{6^2}{10}=3.6\left(cm\right)\)
3: Xét ΔBAC có BK là đường phân giác
nên \(\dfrac{AK}{KC}=\dfrac{AB}{BC}\)
mà \(\dfrac{AB}{BC}=\dfrac{BH}{AB}\)
nên \(\dfrac{AK}{KC}=\dfrac{BH}{AB}\left(1\right)\)
Xét ΔAHC vuông tại H và ΔBHA vuông tại H có
\(\widehat{HAC}=\widehat{HBA}\)
Do đó: ΔAHC\(\sim\)ΔBHA
Suy ra: \(\dfrac{AC}{AB}=\dfrac{AH}{BH}\)
=>BH/AH=AB/AC
hay \(\dfrac{BH}{AB}=\dfrac{AH}{AC}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{AK}{KC}=\dfrac{AH}{AC}\)
hay \(AK\cdot AC=AH\cdot KC\)