lập phương trình đường tròn qua A( 1,-2) và qua giao điểm của đường thẳng (d) : x-7y+10=0 với đường tròn x2+y2-2x+4y-20=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
Gọi \(I\left(x;y\right)\) là tâm đường tròn \(\Rightarrow\overrightarrow{AI}=\left(x-1;y-3\right)\)
Do đường tròn tiếp xúc với \(d_1;d_2\) nên:
\(d\left(I;d_1\right)=d\left(I;d_2\right)\Rightarrow\dfrac{\left|5x+y-3\right|}{\sqrt{26}}=\dfrac{\left|2x-7y+1\right|}{\sqrt{53}}\)
Chà, đề đúng ko em nhỉ, thế này thì vẫn làm được nhưng rõ ràng nhìn 2 cái mẫu kia thì số liệu sẽ xấu 1 cách vô lý.
2.
Phương trình đường thẳng kia là gì nhỉ? \(2x+y=0\) à?
ĐÁP ÁN D
Tọa độ giao điểm của đường thẳng ∆ và đường tròn (C) nếu có là nghiệm hệ phương trình: là nghiệm của hệ phương trình
x − y + 4 = 0 ( 1 ) x 2 + y 2 + 2 x − 4 y − 8 = 0 ( 2 )
Từ (1) suy ra: y = x + 4 thay vào (2) ta được:
x 2 + ( x + 4 ) 2 + 2 x – 4 . ( x + 4 ) - 8 = 0 x 2 + x 2 + 8 x + 16 + 2 x - 4 x – 16 - 8 = 0
2x2 + 6x - 8 = 0 ⇔ x = 1 ⇒ y = 5 x = − 4 ⇒ y = 0
Vậy đường thẳng cắt đường tròn tại 2 điểm phân biệt là (1; 5) và ( -4; 0)
Gọi M′, d′ và (C') theo thứ tự là ảnh của M, d và (C) qua phép đối xứng qua trục Ox .
Khi đó M′ = (3;5) . Để tìm ta viết biểu thức tọa độ của phép đối xứng qua trục:
Thay (1) vào phương trình của đường thẳng d ta được 3x′ − 2y′ − 6 = 0.
Từ đó suy ra phương trình của d' là 3x − 2y – 6 = 0
Thay (1) vào phương trình của (C) ta được x ' 2 + y ' 2 − 2 x ′ + 4 y ′ − 4 = 0 .
Từ đó suy ra phương trình của (C') là x − 1 2 + y − 2 2 = 9 .
Cũng có thể nhận xét (C) có tâm là I(1; −2), bán kính bằng 3,
từ đó suy ra tâm I' của (C') có tọa độ (1;2) và phương trình của (C') là x − 1 2 + y − 2 2 = 9
Đáp án D
Gọi d là đường thẳng qua M có véc tơ chỉ phương:
- Đường tròn (C1) tâm I1 (1;1) và R1= 1
Đường tròn (C2) : tâm I2( -2;0) và R2= 3
- Nếu d cắt (C1) tại A :
- Nếu d cắt (C2) tại B:
- Theo giả thiết: MA= 2 MB nên MA2= 4 MB2 (*)
- Ta có :
a) Gọi M', d' và (C') theo thứ tự là ảnh của M, d và (C) qua phép đối xứng qua O.
Dùng biểu thức tọa độ của phép đối xứng qua gốc tọa độ ta có :
M′ = (2; −3), phương trình của d′: 3x – y – 9 = 0, phương trình của đường tròn (C′): x 2 + y 2 − 2 x + 6 y + 6 = 0 .
b) Gọi M', d' và (C') theo thứ tự là ảnh của M, d và (C) qua phép đối xứng qua I .
Vì I là trung điểm của MM' nên M′ = (4;1)
Vì d' song song với d nên d' có phương trình 3x – y + C = 0.
Lấy một điểm trên d, chẳng hạn N(0; 9).
Khi đó ảnh của N qua phép đối xứng qua tâm I là N′(2; −5).
Vì N' thuộc d nên ta có 3.2 − (−5) + C = 0. Từ đó suy ra C = -11.
Vậy phương trình của d' là 3x – y – 11 = 0.
Để tìm (C'), trước hết ta để ý rằng (C) là đường tròn tâm J(−1; 3),
bán kính bằng 2. Ảnh của J qua phép đối xứng qua tâm I là J′(3; 1).
Do đó (C') là đường tròn tâm J' bán kính bằng 2. Phương trình của (C') là x − 3 2 + y − 1 2 = 4 .
Đáp án: C
Ta có:
(C): x 2 + y 2 + 2x + 4y = 0 ⇔ (x + 1 ) 2 + (y + 2 ) 2 = 5
⇒ I(-1;-2), R = 5
Vì d’ song song với d nên d': 2x + y + c = 0, (c ≠ -3)
Đường thẳng d’ tiếp xúc với (C) nên
Vậy phương trình đường thẳng d’ là: 2x + y - 1 = 0 hoặc 2x + y + 9 = 0
ĐÁP ÁN D
Đường tròn (C) có tâm I( -1; 3).
Do đường thẳng ∆ qua M cắt đường tròn tại hai điểm A, B sao cho M là trung điểm của AB nên I M ⊥ Δ ( quan hệ vuông góc đường kính và dây cung).
Đường thẳng ∆: đi qua M(-2; 1) và nhận M I → ( 1 ; 2 ) làm VTPT nên có phương trình là :
1. (x + 2) + 2(y – 1) = 0 hay x+ 2y = 0
\(x-7y+10=0\Rightarrow x=7y-10\)
Thay vào pt đường tròn:
\(\left(7y-10\right)^2+y^2-2\left(7y-10\right)+4y-20=0\)
\(\Leftrightarrow y^2-3y+2=0\Rightarrow\left[{}\begin{matrix}y=1\Rightarrow x=-3\\y=2\Rightarrow x=4\end{matrix}\right.\)
Gọi \(B\left(-3;1\right);C\left(4;2\right)\)
Phương trình trung trực AB có dạng:
\(4\left(x+1\right)-3\left(y+\frac{1}{2}\right)=0\Leftrightarrow8x-6y+5=0\)
Phương trình trung trực BC có dạng:
\(7\left(x-\frac{1}{2}\right)+1\left(y-\frac{3}{2}\right)=0\Leftrightarrow7x+y-5=0\)
Tọa độ tâm I là nghiệm: \(\left\{{}\begin{matrix}8x-6y+5=0\\7x+y-5=0\end{matrix}\right.\) \(\Rightarrow I\left(\frac{1}{2};\frac{3}{2}\right)\)
\(\Rightarrow R^2=IA^2=\sqrt{\left(1-\frac{1}{2}\right)^2+\left(-2-\frac{3}{2}\right)^2}=\frac{25}{2}\)
Phương trình: \(\left(x-\frac{1}{2}\right)^2+\left(y-\frac{3}{2}\right)^2=\frac{25}{2}\)
Quy trình làm như vậy, còn các bước tính toán bạn kiểm tra lại
Tham khảo :
mk tham khảo nên ko chắc đúng
\(Đáp án: ( x − 1 2 ) 2 + ( y − 3 2 ) 2 = 25 2 Giải thích các bước giải: Tọa độ giao điểm của (d) và (C) là nghiệm của hệ phương trình { x − 7 y + 10 = 0 x 2 + y 2 − 2 x + 4 y − 20 = 0 ⇔ { x = 7 y − 10 ( 1 ) x 2 + y 2 − 2 x + 4 y − 20 = 0 ( 2 ) Thay (1) vào (2) ta được ( 7 y − 10 ) 2 + y 2 − 2 ( 7 y − 10 ) + 4 y − 20 = 0 ⇔ 49 y 2 − 140 y + 100 + y 2 − 14 y + 20 + 4 y − 20 = 0 ⇔ 50 y 2 − 150 y + 100 = 0 ⇔ y 2 − 3 y + 2 = 0 ⇔ ( y − 2 ) ( y − 1 ) = 0 ⇔ [ y = 2 y = 1 + ) y = 2 ⇒ x = 4 ⇒ B ( 4 ; 2 ) + ) y = 1 ⇒ x = − 3 ⇒ C ( − 3 ; 1 ) Phương trình đường tròn có dạng ( C 1 ) x 2 + y 2 − 2 a x − 2 b y + c = 0 Ta có đường tròn đi qua 3 điểm A ( 1 ; − 2 ) , B ( 4 ; 2 ) , C ( − 3 ; 1 ) A ( 1 ; − 2 ) ∈ ( C 1 ) : 1 2 + ( − 2 ) 2 − 2 a + 4 b + c = 0 ⇔ − 2 a + 4 b + c = − 5 B ( 4 ; 2 ) ∈ ( C 1 ) : 4 2 + 2 2 − 8 a − 4 b + c = 0 ⇔ − 8 a − 4 b + c = − 20 C ( − 3 ; 1 ) ∈ ( C 1 ) : ( − 3 ) 2 + 1 2 + 6 a − 2 b + c = 0 ⇔ 6 a − 2 b + c = − 10 Ta có hệ phương trình ⎧ ⎨ ⎩ − 2 a + 4 b + c = − 5 − 8 a − 4 b + c = − 20 6 a − 2 b + c = − 10 ⇔ ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ a = 1 2 b = 3 2 c = − 10 ⇒ I ( 1 2 ; 3 2 ) , R = √ 1 2 2 + 3 2 2 − ( − 10 ) = 5 √ 2 2 Phương trình đường tròn có dạng ( x − 1 2 ) 2 + ( y − 3 2 ) 2 = 25 2 \)
Xucana nó lỗi luôn😂