Cho tam giác ABC vuông tại A. Có phân giác BE. Kẻ EH vuông góc với BC (H∈BC).Gọi K là giao điểm của các cạnh BA và HE.
a) Chứng minh: BE⊥KC .
b) So sánh AE và EC.
c) Lấy D thuộc cạnh BC, Sao cho . Gọi I là giao điểm của BE và AD. Chứng minh I cách đều ba cạnh của tam giác ABC.
Mọi người ơi giúp mình vớiiii, nhớ làm cả phần c nhaaaa
a: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có
BE chung
\(\widehat{ABE}=\widehat{HBE}\)
Do đó: ΔBAE=ΔBHE
Suy ra: BA=BH và EA=EH
Xét ΔAEK vuông tại A và ΔHEC vuông tại H có
EA=EH
\(\widehat{AEK}=\widehat{HEC}\)
Do đó: ΔAEK=ΔHEC
Suy ra: EK=EC và AK=HC
Ta có: BA+AK=BK
BH+HC=BC
mà BA=BH
và AK=HC
nên BK=BC
=>ΔBKC cân tại B
mà BE là đường phân giác
nên BE là đường cao
b: Ta có: AE=EH
mà EH<EC
nên AE<EC
c: Sao cho gì bạn ơi?