Tính nhanh:
\(\left(x-\frac{1}{5}\right)^{2004}+\left(y+0,4\right)^{100}+\left(z-3\right)^{678}=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-\frac{1}{5}\right)^{2004}+\left(y+0,4\right)^{100}+\left(z-3\right)^{678}=0\)
Do \(\left(x-\frac{1}{5}\right)^{2004};\left(y+0,4\right)^{100};\left(z-3\right)^{678}\ge0\forall x,y,z\)
\(\Rightarrow\left(x-\frac{1}{5}\right)^{2004}+\left(y+0,4\right)^{100}+\left(z-3\right)^{678}=0\)
\(\Leftrightarrow\hept{\begin{cases}x-\frac{1}{5}=0\\y+0,4=0\\z-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0,2\\y=-0,4\\z=3\end{cases}}\)
....
Ta có:
\(\left\{{}\begin{matrix}\left(x-\frac{1}{5}\right)^{2004}\ge0\\\left(y+0,4\right)^{100}\ge0\\\left(z-3\right)^{678}\ge0\\\left(x-\frac{1}{5}\right)^{2004}+\left(y+0,4\right)^{100}+\left(z-3\right)^{678}=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x-\frac{1}{5}\right)^{2004}=0\\\left(y+0,4\right)^{100}=0\\\left(z-3\right)^{678}=0\\\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x-\frac{1}{5}\right)=0\\\left(y+0,4\right)=0\\\left(z-3\right)=0\\\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\frac{1}{5}\\y=-0,4\\z=3\end{matrix}\right.\)
\(\left(x-\dfrac{1}{5}\right)^{2004}+\left(y+0.4\right)^{100}+\left(z-3\right)^{678}=0\)
\(\Rightarrow\left\{{}\begin{matrix}x-\dfrac{1}{5}=0\\y+0.4=0\\z-3=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{5}\\y=-0.4\\z=3\end{matrix}\right.\)
Vì (x-1/5)2004 \(\ge\)0
(y+0,4)100\(\ge\)0
(z-3)678\(\ge\)0
=>(x-1/5)2004+(y+0,4)100+(z-3)678\(\ge0\)
Dấu "="xảy ra khi \(\left\{{}\begin{matrix}x-\dfrac{1}{5}=0\\y+0,4=0\\z-3=0\end{matrix}\right.\) =>\(\left\{{}\begin{matrix}x=\dfrac{1}{5}\\y=-0,4\\z=3\end{matrix}\right.\)
Vậy x=1/5,y=-0,4,z=3
Vì \(\left(x-\frac{1}{5}\right)^{2004}\ge0\);\(\left(y+0,4\right)^{100}\ge0\);\(\left(z-3\right)^{678}\ge0\)( Vì mũ chẵn)
Nên để biểu thức bằng 0 \(\Leftrightarrow\hept{\begin{cases}x-\frac{1}{5}=0\\y+0,4=0\\z-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{5}\\y=-0,4\\z=3\end{cases}}\)
\(3x=y\)=> \(\frac{x}{1}=\frac{y}{3}\)
hay \(\frac{x}{4}=\frac{y}{12}\)
\(5y=4z\)=> \(\frac{y}{4}=\frac{z}{5}\)
hay \(\frac{y}{12}=\frac{z}{15}\)
suy ra: \(\frac{x}{4}=\frac{y}{12}=\frac{z}{15}\)
đến đây bạn ADTCDTSBN nhé
Vì:
\(\left(x-\frac{1}{5}\right)^{2004}\ge0∀x\)
\(\left(y+0,4\right)^{100}\ge0∀y\)
\(\left(z-3\right)^{678}\ge0∀z\)
Do đó
\(\left(x-\frac{1}{5}\right)^{2004}+\left(y+0,4\right)^{100}+\left(z-3\right)^{678}\ge0\)\(\text{ ∀ }x,y,z\)
Mà theo đề bài ta có: \(\left(x-\frac{1}{5}\right)^{2004}+\left(y+0,4\right)^{100}+\left(z-3\right)^{678}=0\)
Nên: \(\hept{\begin{cases}\left(x-\frac{1}{5}\right)^{2004}=0\\\left(y+0,4\right)^{100}=0\\\left(z-3\right)^{678}=0\end{cases}}\)
\(=>\hept{\begin{cases}x=\frac{1}{5}\\y=-0,4\\z=3\end{cases}}\)
Vậy \(\left(x,y,z\right)\in\left\{\frac{1}{5};-0,4;3\right\}\)
Nếu sai mong bạn thông cảm
HT bạn nhé