b) 2021 + 5[300 – (17 – 7)2]
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 3.52 + 15.22 - 26 : 2
= 3.25 + 15.4 - 13
= 75 + 60 - 13
= 135 - 13
= 122
b) 2021 + 5.[300 - (17 - 7)2]
= 2021 + 5.[300 - 102]
= 2021 + 5.[300 - 100]
= 2021 + 5.200
= 2021 + 1000
= 3021
c) 32.5 + 23.10 - 81
= 9.5 + 8.10 - 81
= 45 + 80 - 81
= 125 - 81
= 44
a) 3.52 + 15.22 - 26 : 2
= 3. 25 + 15 . 4 - 26 : 2
= 75 + 60 - 13
= 135 - 13
= 122
b) 2021 + 5[300 - (17 - 7)2 ]
= 2021 + 5[300 - 102 ]
=2021 + 5[300 - 100]
=2021 + 5.200
=2021 + 1000
= 3021
c) 32 . 5 + 23 . 10 - 81
= 9 . 5 + 8 . 10 - 81
= 45 + 80 - 81
= 125 - 81
= 44
a: M=-2021+2021-68-68+17
=-119
b: B=(-1)+(-1)+...+(-1)
=-1x500
=-500
c: C=(1-2-3+4)+(5-6-7+8)+...+(997-998-999+1000)
=0
Ta có: \(2011+5\left[300-\left(17-7\right)^2\right]\)
\(=2011+5\left[300-10^2\right]\)
\(=2011+1000=3011\)
\(2011+5.\left[300-\left(17-7\right)^2\right]\)
\(=2011+5.\left[300-\left(10\right)^2\right]\)
\(=2011+5.\left[300-100\right]\)
\(=2011+5.200\)
\(=2011+1000\)
\(=3011\)
a: \(=2011+5\cdot\left[300-10^2\right]\)
\(=2011+5\cdot200\)
=1011
b: \(=695-\left[200+10^2\right]\)
=695-300
=395
a) =2011+5.200
=3011
b)=695-300
=395
c)1=29-5.4
=109
d)=2010-2000:400
=2010-5
=2005
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
1) Ta có: \(\left(\dfrac{3}{4}\cdot\dfrac{5}{97}+\dfrac{1}{9}\cdot\dfrac{13}{47}\right)\cdot\left(\dfrac{1}{5}-\dfrac{7}{25}\cdot\dfrac{5}{7}\right)\)
\(=\left(\dfrac{3}{4}\cdot\dfrac{5}{97}+\dfrac{1}{9}\cdot\dfrac{13}{47}\right)\cdot\left(\dfrac{1}{5}-\dfrac{1}{5}\right)\)
=0
2) Ta có: \(\dfrac{8}{17}\cdot\dfrac{4}{15}+\dfrac{8}{17}\cdot\dfrac{22}{15}-\dfrac{8}{15}\cdot\dfrac{9}{17}\)
\(=\dfrac{8}{17}\left(\dfrac{4}{15}+\dfrac{22}{15}-\dfrac{9}{15}\right)\)
\(=\dfrac{8}{17}\cdot\dfrac{15}{15}=\dfrac{8}{17}\)
3) Ta có: \(\dfrac{2021}{2}\cdot\dfrac{1}{3}+\dfrac{4042}{4}\cdot\dfrac{1}{5}+\dfrac{6063}{3}\cdot\dfrac{22}{15}\)
\(=\dfrac{2021}{2}\left(\dfrac{1}{3}+\dfrac{1}{5}\right)+2021\cdot\dfrac{22}{15}\)
\(=\dfrac{2021}{2}\cdot\dfrac{8}{15}+\dfrac{2021}{2}\cdot\dfrac{44}{15}\)
\(=\dfrac{2021}{2}\cdot\dfrac{52}{15}\)
\(=\dfrac{52546}{15}\)
4) Ta có: \(\dfrac{4}{7}\cdot\dfrac{2}{13}+\dfrac{8}{13}:\dfrac{7}{4}+\dfrac{4}{7}:\dfrac{13}{2}+\dfrac{4}{7}\cdot\dfrac{1}{13}\)
\(=\dfrac{4}{7}\left(\dfrac{2}{13}+\dfrac{8}{13}+\dfrac{2}{13}+\dfrac{1}{13}\right)\)
\(=\dfrac{4}{7}\)
e) 2011 + 5[300 – (17 – 7)2 ]
= 2011 + 5[300 - 100]
= 2011 + 5 . 200
= 2011 + 1000
= 3011
=2011+5[300-10^2]
=2011+5[300-100]
=2011+5*200
=2011+1000
=3011
\(2021+5\left[300-\left(17-7\right)^2\right]\)
\(=2021+5\left[300-10^2\right]\)
\(=2021+5\left[300-100\right]\)
\(=2021+5\cdot200\)
\(=2021+1000=3021\)
b) 2021 + 5 [300 - (17 - 7)2]
= 2021 + 5 [ 300 - 102]
= 2021 + 5 [ 300 - 100]
= 2021 + 5 . 200
= 2021 + 1000
= 3021