Cho parabol (P): y = x2 và đường thẳng (d): y = -1/2 x + 3.
a) Tìm tọa độ các giao điểm A và B của (d) và (P).
b) Tìm tọa độ điểm C thuộc trục hoành để chu vi tam giác ABC đạt già trị lớn nhất.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. ...
b/ y = x + 1 (d)
y = - x - 3 (d')
A là giao điểm của d và Ox
=> 0 = x + 1
<=> x = -1
=> A ( -1;0)
B là giao điểm của (d') và Ox
=> 0 = -x - 3
<=> x = -3
=> B ( -3 ; 0)
C là giao điểm của (d) và (d')
Ptrình hoành độ gđiểm (d) và (d') x + 1 = - x - 3
<=> x = -2
=> y = -1
=> C ( -2 ; -1 )
c/ AB = OB - OA = 3 - 1 = 2
\(AC=\sqrt{\left(x_A-x_C\right)^2+\left(y_A-y_C\right)^2}=\sqrt{\left(-1+2\right)^2+\left(0+1\right)^2}=\sqrt{2}\)
\(BC=\sqrt{\left(-3+2\right)^2+\left(0+1\right)^2}=\sqrt{2}\)
Chu vi tam giác = AB + AC +BC = \(2+2\sqrt{2}\)
a: PTHĐGĐ là:
x^2+mx-m-2=0(1)
Khi m=2 thì (1) sẽ là
x^2+2x-2-2=0
=>x^2+2x-4=0
=>\(\left[{}\begin{matrix}x=-1+\sqrt{5}\\x=-1-\sqrt{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=6-2\sqrt{5}\\y=6+2\sqrt{5}\end{matrix}\right.\)
b: Δ=m^2-4(-m-2)
=m^2+4m+8
=(m+2)^2+4>0 với mọi x
=>(d) luôn cắt (P) tại hai điểm phân biệtx
x1^2+x2^2=7
=>(x1+x2)^2-2x1x2=7
=>(-m)^2-2(-m-2)=7
=>m^2+2m+4-7=0
=>m^2+2m-3=0
=>m=-3 hoặc m=1
Phương trình hoành độ giao điểm:
\(-\dfrac{1}{2}x^2=mx+m-3\Leftrightarrow x^2+2mx+2m-6=0\) (1)
a. Khi \(m=-1\), (1) trở thành:
\(x^2-2x-8=0\Rightarrow\left[{}\begin{matrix}x=4\Rightarrow y=-8\\x=-2\Rightarrow y=-2\end{matrix}\right.\)
Vậy (d) cắt (P) tại 2 điểm có tọa độ là \(\left(4;-8\right)\) ; \(\left(-2;-2\right)\)
b.
\(\Delta'=m^2-2m+6=\left(m+1\right)^2+5>0;\forall m\Rightarrow\left(1\right)\) có 2 nghiệm pb với mọi m
Hay (d) cắt (P) tại 2 điểm pb với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=2m-6\end{matrix}\right.\)
\(x_1^2+x_2^2=14\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=14\)
\(\Leftrightarrow4m^2-2\left(2m-6\right)=14\)
\(\Leftrightarrow4m^2-4m-2=0\Rightarrow m=\dfrac{1\pm\sqrt{3}}{2}\)