Hai vòi nước cùng chảy vào một bể không có nước và chảy đầy bể trong 4 giờ 48 phút. Nếu chả riêng thì vòi thứ nhất có thể chảy đầy bể nhanh hơn vòi thứ hai 1 giờ. Hỏi nếu chảy riêng thì mỗi vòi sẽ chảy đầy bể trong bao lâu?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
thời gian bể 1 chảy là x-1
thời gian bể một chảy trong 1 giờ là \(\frac{1}{x-1}\)
thời gian bể thứ 2 chảy là x
thời gian bể 2 chảy trong 1 giờ là \(\frac{1}{x}\)
4 giờ 48=\(\frac{24}{5}h\)
1 giờ 2 bể chảy \(1:\frac{24}{5}=\frac{5}{24}\left(h\right)\)
ta có pt:
\(\frac{1}{x}+\frac{1}{x-1}=\frac{5}{24}\)
\(24x-24+24x=5x\left(x+1\right)\)
\(48x+24=5x^2-5\)
\(5x^2-48x-29=0\)
\(\sqrt{\Delta}=2\sqrt{721}\)
\(x_1=\frac{48+2\sqrt{721}}{10}=\frac{24+\sqrt{721}}{5}\)
\(x_2=\frac{48-2\sqrt{721}}{10}\left(KTM\right)\)
vòi thứ 1 chảy số giờ là:
\(\frac{24+\sqrt{721}}{5}-1=\frac{19+\sqrt{721}}{5}\left(h\right)\)
gọi 1/x là số nước chảy vào trong 1 h của vòi một
=> ... vòi hai là 1/X+6
ta có:
1/x+1/x+6 = 1/4
=> x bằng 6
. vậy nếu mở riêng từng vòi thì vòi 1 có thời gian là 6h
vòi hai là 10h
Đổi : 6h 40' = \(6\frac{2}{3}\)h
Gọi thời gian vòi thứ nhất chảy riêng để đầy bể là x giờ (x > 3)
\(\Rightarrow\)Thời gian vòi thứ hai chảy riêng để đầy bể là x - 3 giờ
Ta có phương trình :
\(\frac{1}{x}+\frac{1}{x-3}=\frac{1}{6\frac{2}{3}}\)
\(\Leftrightarrow\frac{x-3+x}{x^2-3x}=\frac{3}{20}\)
\(\Leftrightarrow\frac{2x-3}{x^2-3x}=\frac{3}{20}\)
\(\Leftrightarrow40x-60=3x^2-9x\)
\(\Leftrightarrow3x^2-49x+60=0\)
\(\Leftrightarrow\left(x-15\right)\left(3x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-15=0\\3x-4=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=15\left(tm\right)\\x=\frac{4}{3}\left(ktm\right)\end{cases}}\)
Vậy thời gian vòi thứ nhất chảy một mình để bể đầy là 15 giờ
thời gian vòi thứ hai chảy một mình để bể đầy là 15 - 3 = 12 giờ
Một giờ vòi thứ nhất chảy số phần bể là:
1:9=1/9(bể)
Một giờ vòi thứ hai chảy số phần bể là:
1:6=1/6(bể)
Cả hai vòi cùng chảy thì số giờ để đầy bể là:
1:(1/9+1/6)=18/5(giờ)
Đổi: 18/5 giờ=3 giờ 36 phút
Vậy đến giờ đầy bể là:
8 giờ 24 phút + 3 giờ 36 phút = 12 giờ.
1 giờ vòi thứ nhất chảy được: 1 : 9=1/9 (bể)
1 giờ vòi thứ 2 chảy được:1 : 6=1/6 (bể)
Hai vòi cùng chảy thì đầy trong: 1 : (1/9 + 1/6)=18/5 (giờ)
Đổi 18/5=3 giờ 36 phút
Bể đầy lúc: 8 giờ 24 phút + 3 giờ 36 phút =12 giờ
Đ/S:12 giờ
Gọi x ( giờ ) là thời gian vòi thứ nhất chảy một mình đầy bể :
\(\left(x>\frac{35}{12}\right)\) Đổi : \(2h55'=\frac{12}{35}\left(h\right)\)
Thời gian vòi thứ hai chảy một mình đầy bể là : ( x + 2 )
Trong 1 giờ vòi thứ nhất chảy được \(\frac{1}{x}\)bể và vòi thứ hai chảy được \(\frac{1}{x+2}\)bể nên ta có phương trình :
\(\frac{1}{x}+\frac{1}{x+2}=\frac{12}{35}\)
\(\Leftrightarrow\)\(35\left(x+2+x\right)=12x\left(x+2\right)\Leftrightarrow6x^2-23x-35=0\)
Giải phương trình ta có 2 nghiệm là :
\(x1=5\)và \(x2=\frac{-7}{6}\)
Đối chiếu với điều kiện ban đầu ta được:
- Thời gian vòi thứ nhất chảy một mình đầy bể là 5giờ.
- Thời gian vòi thứ hai chảy một mình đầy bể là 7 giờ.
giúp với ;-;
Gọi thời gian vòi 1 ; 2 chảy một mình xong lần lượt là x ; y(ngày) (x;y > 4,8)
1 giờ vòi 1 chảy \(\dfrac{1}{x}\)(bể)
1 giờ vòi 2 chảy \(\dfrac{1}{y}\)(bể)
=> 1 giờ 2 vòi chảy \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{4,8}\) (1)
Lại có y - x = 1 (2)
=> Từ (1)(2) => HPT : \(\left\{{}\begin{matrix}y-x=1\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{4,8}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=x+1\\\dfrac{1}{x}+\dfrac{1}{x+1}=\dfrac{1}{4,8}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=x+1\\x\left(x+1\right)=4,8.\left(2x+1\right)\end{matrix}\right.\)
\(\left\{{}\begin{matrix}5x^2-43x-24=0\\y=x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(10x-43\right)^2=2089\\y=x+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{\sqrt{2089}+43}{10}\\y=\dfrac{\sqrt{2089}+53}{10}\end{matrix}\right.\)