tìm a thuộc Z để \(\left(a^2-1\right)\left(a^2-4\right)\left(a^2-7\right)\left(a^2-10\right)<0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 8:
a) Đk: x#2 (*)
Với (*), A=(x - 2 + 5)/(x - 2)= 1 + 5/(x - 2)
A nguyên <=> x-2 thuộc Ư(5)={-5;-1;1;5}
=> S={-3;1;3;7}
b) Đk: x#-3
Với (*), A= (- 2x - 6 + 7)/(x + 3) = -2 + 7/(x+3)
A nguyên <=> x + 3 thuộc Ư(7)={1;-1;7;-7}
=> S = {-2;- 4;4;-10}
) Đk: x#2 (*)
Với (*), A=(x - 2 + 5)/(x - 2)= 1 + 5/(x - 2)
A nguyên <=> x-2 thuộc Ư(5)={-5;-1;1;5}
=> S={-3;1;3;7}
b) Đk: x#-3
Với (*), A= (- 2x - 6 + 7)/(x + 3) = -2 + 7/(x+3)
A nguyên <=> x + 3 thuộc Ư(7)={1;-1;7;-7
\(\left(a^2-5\right)\left(a^2-10\right)\left(a^2-15\right)\left(a^2-20\right)< 0\)
Có 4 trường hợp .
1) a2 - 5 < 0 Hoặc 2) a2 - 10 < 0 Hoặc 3) a2 - 15 < 0 Hoặc 4) a2 - 20 < 0
=> a2 < 5 => a2 < 10 => a2 < 15 => a2 < 20
=> a < \(\sqrt{5}\) => a < \(\sqrt{10}\) => a < \(\sqrt{15}\) => a < \(\sqrt{20}\)
tích của bốn số a2 - 10, a2 - 7, a2 - 4, a2 - 1 là số âm nên phải có 1 hoặc 3 số âm.
Ta có : a2 - 10 < a2 - 7 < a2 - 4 < a2 - 1.
Xét hai trường hợp :
+) có một số âm, ba số dương :
a2 - 10 < 0 < a2 - 7 \(\Rightarrow\)7 < a2 < 10 \(\Rightarrow\)a2 = 9 \(\Rightarrow\)a = \(\mp3\)
+) có ba số âm, một số dương :
a2 - 4 < 0 < a2 - 1 \(\Rightarrow\)1 < a2 < 4 \(\Rightarrow\)không có giá trị a nguyên nào thỏa mãn trường hợp trên
Vậy a = \(\mp3\)
TH1:Tích có chứa 1 thừa số nguyên âm:
Ta có:\(^{a^2-1>a^2-4>a^2-7>a^2-10}\)
\(\Rightarrow\hept{\begin{cases}a^2-7>0\\a^2-10< 0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a^2>7\\a^2< 10\end{cases}}\)
\(\Rightarrow a^2=9\Rightarrow a=3\)
TH2: Tích có chứa 3 thừa số nguyên âm:
Ta có: \(a^2-1>a^2-4>a^2-7>a^2-10\)
\(\Rightarrow\hept{\begin{cases}a^2-1>0\\a^2-4< 0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a^2>1\\a^2< 4\end{cases}}\)
\(\Rightarrow\)Không có giá trị nào của a trong TH2
Vậy a=3
B1: a, |2 - x| + 2 = x
=> |2 - x| = x - 2
Dễ thấy (2 - x) và số đối của (x - 2)
=> |2 - x| = x - 2
=> 2 - x ≤ 0
=> x ≥ 2
b, Điều kiện: x + 7 ≥ 0 => x ≥ -7
Ta có: |x - 9| = x + 7
\(\Rightarrow\orbr{\begin{cases}x-9=x+7\\x-9=-x-7\end{cases}\Rightarrow}\orbr{\begin{cases}0x=16\left(loai\right)\\2x=2\end{cases}\Rightarrow x=1}\left(t/m\right)\)
Tích bốn số a2 - 10, a2 - 7, a2 - 4, a2 - 1 là số âm nên phải có 1 hoặc 3 số âm.
Ta có : a2 - 10 < a2 - 7 < a2 - 7 < a2 - 4 < a2 - 1.
Xét 2 trường hợp :
TH1 : có 1 số âm, 3 số dương
a2 - 10 < a2 - 7 \(\Rightarrow\)7 < a2 < 10 \(\Rightarrow\)a2 = 9 ( do a \(\in\)Z ) \(\Rightarrow\)a = -3 hoặc a = 3
TH2 : có 3 số âm, 1 số dương
a2 - 4 < 0 < a2 - 1 \(\Rightarrow\)1 < a2 < 4 . Do a \(\in\)Z nên không có số nguyên a nào thỏa mãn
Vậy \(a=\orbr{\begin{cases}3\\-3\end{cases}}\)
1.a.
\(\left(x+1\right)\left(x+2\right)\left(x-2\right)\left(x+5\right)\ge m\)
\(\Leftrightarrow\left(x^2+3x+2\right)\left(x^2+3x-10\right)\ge m\)
Đặt \(x^2+3x-10=t\ge-\dfrac{49}{4}\)
\(\Rightarrow\left(t+2\right)t\ge m\Leftrightarrow t^2+2t\ge m\)
Xét \(f\left(t\right)=t^2+2t\) với \(t\ge-\dfrac{49}{4}\)
\(-\dfrac{b}{2a}=-1\) ; \(f\left(-1\right)=-1\) ; \(f\left(-\dfrac{49}{4}\right)=\dfrac{2009}{16}\)
\(\Rightarrow f\left(t\right)\ge-1\)
\(\Rightarrow\) BPT đúng với mọi x khi \(m\le-1\)
Có 30 giá trị nguyên của m
1b.
Với \(x=0\) BPT luôn đúng
Với \(x\ne0\) BPT tương đương:
\(\dfrac{\left(x^2-2x+4\right)\left(x^2+3x+4\right)}{x^2}\ge m\)
\(\Leftrightarrow\left(x+\dfrac{4}{x}-2\right)\left(x+\dfrac{4}{x}+3\right)\ge m\)
Đặt \(x+\dfrac{4}{x}-2=t\) \(\Rightarrow\left[{}\begin{matrix}t\ge2\\t\le-6\end{matrix}\right.\)
\(\Rightarrow t\left(t+5\right)\ge m\Leftrightarrow t^2+5t\ge m\)
Xét hàm \(f\left(t\right)=t^2+5t\) trên \(D=(-\infty;-6]\cup[2;+\infty)\)
\(-\dfrac{b}{2a}=-\dfrac{5}{2}\notin D\) ; \(f\left(-6\right)=6\) ; \(f\left(2\right)=14\)
\(\Rightarrow f\left(t\right)\ge6\)
\(\Rightarrow m\le6\)
Vậy có 37 giá trị nguyên của m thỏa mãn
a, Ta thấy : \(\left\{{}\begin{matrix}\left(2a+1\right)^2\ge0\\\left(b+3\right)^2\ge0\\\left(5c-6\right)^2\ge0\end{matrix}\right.\)\(\forall a,b,c\in R\)
\(\Rightarrow\left(2a+1\right)^2+\left(b+3\right)^2+\left(5c-6\right)^2\ge0\forall a,b,c\in R\)
Mà \(\left(2a+1\right)^2+\left(b+3\right)^2+\left(5c-6\right)^2\le0\)
Nên trường hợp chỉ xảy ra là : \(\left(2a+1\right)^2+\left(b+3\right)^2+\left(5c-6\right)^2=0\)
- Dấu " = " xảy ra \(\left\{{}\begin{matrix}2a+1=0\\b+3=0\\5c-6=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{1}{2}\\b=-3\\c=\dfrac{6}{5}\end{matrix}\right.\)
Vậy ...
b,c,d tương tự câu a nha chỉ cần thay số vào là ra ;-;
Vì tích (a2 -1)(a2 - 4)(a2 - 7)(a2 - 10) là tích của 4 thừa số nhỏ hơn 0
=> Có 1 hoặc 3 thừa số nhỏ hơn 0
Mà a2 - 1 > a2 - 4 > a2 - 7 > a2 - 10.
+) TH1 : Có 1 thừa số nguyên âm
=> a2 - 7 > 0 => a2 > 7
=> a2 - 10 < 0 => a2 < 10
=> 7< a2< 10 => a2 = 9 => a \(\in\){ 3; -3}
+) TH2 : Có 3 thừa số nguyên âm
=> a2 - 1 > 0 => a2 > 1
=> a2 - 4 < 0 => a2 < 4
=> 1< a2 < 4 => a2 thuộc rỗng => a thuộc rỗng
Vậy a \(\in\){3 ; -3}