chứng minh 4a^2+b^2-4a+2b+5/2>0 với mọi a,b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4a2 + b2 - 4a + 2b + \(\dfrac{5}{2}\) > 0
\(\Leftrightarrow\left(4a^2-4a+1\right)+\left(b^2+2b+1\right)+\dfrac{1}{2}>0\)
\(\Leftrightarrow\left(2a-1\right)^2+\left(b+1\right)^2+\dfrac{1}{2}>0\)
Vì \(\left(2a-1\right)^2+\left(b+1\right)^2\ge0\Rightarrow\left(2a-1\right)^2+\left(b+1\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}>0\)
\(\left(a^2+b^2-c^2\right)^2-4a^2b^2\\ =\left(a^2+b^2-c^2+2ab\right)\left(a^2+b^2-c^2-2ab\right)\\ =\left[\left(a+b\right)^2-c^2\right]\left[\left(a-b\right)^2-c^2\right]\\ =-\left(a+b+c\right)\left(a+b-c\right)\left(a+c-b\right)\left(b+c-a\right)\)
Tổng 2 cạnh tam giác > cạnh thứ 3 nên cả 4 thừa số trên đều dương.
=> đpcm
\(4a^2b^2+4ab+1=\left(2ab\right)^2+2.2ab.1+1^2=\left(2ab+1\right)^2\ge0\left(\forall a,b\right)\)
a. Ta có: a > b
4a > 4b ( nhân cả 2 vế cho 4)
4a - 3 > 4b - 3 (cộng cả 2 vế cho -3)
b. Ta có: a > b
-2a < -2b ( nhân cả 2 vế cho -2)
1 - 2a < 1 - 2b (cộng cả 2 vế cho 1)
d. Ta có: a < b
-2a > -2b ( nhân cả 2 vế cho -2)
5 - 2a > 5 - 2b (cộng cả 2 vế cho 5)
\(1.CMR:\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)
\(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)=1+\frac{b}{a}+\frac{a}{b}+1=\frac{a}{b}+\frac{b}{a}+2\)
Áp dụng BĐT AM-GM ta có:
\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}=2\)
\(\Rightarrow\frac{a}{b}+\frac{b}{a}+2\ge2+2=4\)
Dấu '' = '' xảy ra khi \(a=b\)
\(2.\\ a.CMR:a^2+2b^2+c^2-2ab-2bc\ge0\forall a,b,c\)
\(a^2+2b^2+c^2-2ab-2bc=a^2-2ab+b^2+c^2-2bc+b^2=\left(a-b\right)^2+\left(b-c\right)^2\ge0\forall a,b,c\)
Dấu '' = '' xảy ra khi \(a=b=c\)
\(b.CMR:a^2+b^2-4a+6b+13\ge0\forall a,b\)
\(a^2+b^2-4a+6b+13=\left(a^2-4a+4\right)+\left(b^2+6b+9\right)=\left(a-2\right)^2+\left(b+9\right)^2\ge0\forall a,b\)
Dấu '' = '' xảy ra khi \(\left\{{}\begin{matrix}a=2\\b=-9\end{matrix}\right.\)
= (4a^2 -4a + 1) + (b^2 + 2b+ 1) + 1/2
= (2a-1)^2 + (b+1)^2 + 1/2 >0 với mọi a, b