Bài 5: Cho tam giác ABC, trung tuyến AM. Từ M kẻ đường thẳng song song với AB cắt AC tại N. Biết AN=MN; BN cắt AM ở O. Chứng minh:
a) Tam giác ABC cân ở A
b) O là trọng tâm của tam giác ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét 2 tam giác AMG và ABH ta có:
\(\widehat{BAH}\) chung
\(\widehat{AMG}=\widehat{ABH}\) (cặp góc đồng vị do BH//MG)
\(\Rightarrow\Delta AMG\sim\Delta ABH\left(g.g\right)\)
\(\Rightarrow\dfrac{AB}{AM}=\dfrac{AH}{AG}\) (1)
Xét 2 tam giác ANG và ACK có:
\(\widehat{CAK}\) chung
\(\widehat{ANG}=\widehat{ACK}\) (cặp góc đồng vị do CK//GN)
\(\Rightarrow\Delta ANG\sim\Delta ACK\left(g.g\right)\)
\(\Rightarrow\dfrac{AC}{AN}=\dfrac{AK}{AG}\) (2)
Xét hai tam giác BOH và COK ta có:
\(\widehat{BOH}=\widehat{COK}\) (đối đỉnh)
\(BO=CO\) (AO là đường trung tuyến nên O là trung điểm của BC)
\(\widehat{HBO}=\widehat{KCO}\) (so le trong vì BH//MN và CK//MN ⇒ BH//CK)
\(\Rightarrow\Delta BOH=\Delta COK\left(g.c.g\right)\)
\(\Rightarrow HO=OK\) (hai cạnh t.ứng)
\(\Rightarrow HK=2HO\)
Ta lấy (1) + (2) \(\Rightarrow\dfrac{AB}{AM}+\dfrac{AC}{AN}=\dfrac{AH+AK}{AG}=\dfrac{AH+AH+HK}{AG}=\dfrac{2AH+HK}{AG}\)
\(=\dfrac{2AH+2HO}{AG}=\dfrac{2\left(AH+HO\right)}{AG}=\dfrac{2AO}{AG}\)
Mà G là trọng tâm của tam giác ABC \(\Rightarrow AO=\dfrac{3}{2}AG\)
\(\Rightarrow\dfrac{AB}{AM}+\dfrac{AC}{AN}=\dfrac{2\cdot\dfrac{3}{2}AG}{AG}=2\cdot\dfrac{3}{2}=3\left(đpcm\right)\)
<br class="Apple-interchange-newline"><div id="inner-editor"></div>ΔABC, có: M là trung điểm BC và MN //BC
=> MN là đường trung bình ΔABC
=> N là trung điểm NC
=> AN=NC mà AN=MN (gt) => MN=NC
Xét ΔMNC, có : MN=NC
=> ΔMNC cân tại N
=> góc M= góc C (1)
Vì MN//AB
=> góc B= góc M( 2 góc đồng vị) (2)
Từ (1) và (2) => góc B= góc C
Xét ΔABC, có : góc B= góc C
=>
<br class="Apple-interchange-newline"><div id="inner-editor"></div>ΔABC, có: M là trung điểm BC và MN //BC
=> MN là đường trung bình ΔABC
=> N là trung điểm NC
=> AN=NC mà AN=MN (gt) => MN=NC
Xét ΔMNC, có : MN=NC
=> ΔMNC cân tại N
=> góc M= góc C (1)
Vì MN//AB
=> góc B= góc M( 2 góc đồng vị) (2)
Từ (1) và (2) => góc B= góc C
Xét ΔABC, có : góc B= góc C
=> ΔABC cân tại A
1: Xét ΔAMC có
MN là đường trung tuyến
MN=AC/2
Do đó:ΔAMC vuông tại M
Xét ΔABC có
AM là đường cao
AM là đường trung tuyến
Do đo: ΔABC cân tại A
2: Xét ΔABC có
BN là đường trung tuyến
AM là đường trung tuyến
BN cắt AM tại O
Do đó: O là trọng tâm của ΔABC
Cm: a) Ta có: BA ⊥⊥AC (gt)
HD // AB (gt)
=> HD ⊥⊥AC => ˆHDA=900HDA^=900
Ta lại có: AC ⊥⊥AB (gt)
HE // AC (gt)
=> HE ⊥⊥AB => ˆHEA=900HEA^=900
Xét tứ giác AEHD có: ˆA=ˆAEH=ˆHDA=900A^=AEH^=HDA^=900
=> AEHD là HCN => AH = DE
b) Gọi O là giao điểm của AH và DE
Ta có: AEHD là HCN => OE = OH = OD = OA
=> t/giác OAD cân tại O => ˆOAD=ˆODAOAD^=ODA^ (1)
Xét t/giác ABC vuông tại A có AM là đường trung tuyến
-> AM = BM = MC = 1/2 BC
=> t/giác AMC cân tại M => ˆMAC=ˆCMAC^=C^
Ta có: ˆB+ˆC=900B^+C^=900 (phụ nhau)
ˆC+ˆHAC=900C^+HAC^=900 (phụ nhau)
=> ˆB=ˆHACB^=HAC^ hay ˆB=ˆOADB^=OAD^ (2)
Từ (1) và (2) => ˆODA=ˆBODA^=B^
Gọi I là giao điểm của MA và ED
Xét t/giác IAD có: ˆIAD+ˆIDA+ˆAID=1800IAD^+IDA^+AID^=1800 (tổng 3 góc của 1 t/giác)
=> ˆAID=1800−(IAD+ˆIDA)AID^=1800−(IAD+IDA^)
hay ˆAID=1800−(ˆB+ˆC)=1800−900=900AID^=1800−(B^+C^)=1800−900=900
=> AM⊥DEAM⊥DE(Đpcm)
c) (thiếu đề)
a,Xét ΔΔAMN có : AN=NM
⇒⇒góc NAM =góc NMA
mà góc NMA= góc MAB (vì MN song song với AB)
nên góc NAM =góc MAB hay MA là tia phân giác góc BAC
Xét ΔΔABC ta có:
AM là tia phân giác góc BAC và cũng là đường trung tuyến ứng với cạnh BC
⇒⇒ΔΔABC cân tại A
b, Theo câu a ta có :ΔΔABC cân tại A
⇒⇒góc ABC = góc NCM
Mà góc NMC = góc ABC
NÊN góc NMC= góc NCM
⇒⇒ ΔΔNMC cân tại N
⇒⇒MN=NC
mà NM=AN
Nên AN=NC hay BN là đường trung tuyến ứng với cạnh AC
Ta có: AM là đường trung tuyến ứng với cạnh BC
BN là đường trung tuyến ứng với cạnh AC
mà BN cắt AM tại O
Nên O là trọng tâm của tam giác ABC
a,Xét ΔΔAMN có : AN=NM
⇒⇒góc NAM =góc NMA
mà góc NMA= góc MAB (vì MN song song với AB)
nên góc NAM =góc MAB hay MA là tia phân giác góc BAC
Xét ΔΔABC ta có:
AM là tia phân giác góc BAC và cũng là đường trung tuyến ứng với cạnh BC
⇒⇒ΔΔABC cân tại A
b, Theo câu a ta có :ΔΔABC cân tại A
⇒⇒góc ABC = góc NCM
Mà góc NMC = góc ABC
NÊN góc NMC= góc NCM
⇒⇒ ΔΔNMC cân tại N
⇒⇒MN=NC
mà NM=AN
Nên AN=NC hay BN là đường trung tuyến ứng với cạnh AC
Ta có: AM là đường trung tuyến ứng với cạnh BC
BN là đường trung tuyến ứng với cạnh AC
mà BN cắt AM tại O
Nên O là trọng tâm của tam giác ABC