Tính tổng:A=2/1×4+2/4×7+2/7×10+...+2/97×100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right).\left(1-\frac{1}{5}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}\)
\(=\frac{1}{5}\)
b) \(\left(1-\frac{3}{4}\right).\left(1-\frac{3}{7}\right).\left(1-\frac{3}{10}\right)........\left(1-\frac{3}{97}\right).\left(1-\frac{3}{100}\right)\)
\(=\frac{1}{4}.\frac{4}{7}.\frac{7}{10}.......\frac{94}{97}.\frac{97}{100}\)
\(=\frac{1}{100}\)
\(D=\frac{2}{1.4}+\frac{2}{4.7}+...+\frac{2}{97.100}\)
\(3D=\frac{2.3}{1.4}+\frac{2.3}{4.7}+...+\frac{2.3}{97.100}\)
\(3D=2\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{97.100}\right)\)
\(3D=2\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(3D=2\left(1-\frac{1}{100}\right)\)
\(3D=2\cdot\frac{99}{100}\)
\(3D=\frac{99}{50}\)
\(D=\frac{99}{50}:3\)
\(D=\frac{33}{50}\)
B = \(\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{97.100}\)
= \(\frac{2}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)
= \(\frac{2}{3}\left(1-\frac{1}{100}\right)=\frac{2}{3}.\frac{99}{100}=\frac{33}{50}\)
a) B= 1 + 3 + 7 + 9 +...+ 99
= ( 1 + 99 ) + ( 97 + 3 ) + ( 95 + 5 ) + ( 93 + 7 ) + ( 91 + 9 ) + ( 89 + 11 ) + ... ,
(Tổng cộng có 25 cặp có tổng là 100.)
= 25 x 100.
B = 2500.
\(A=\frac{3^2}{1.4}+\frac{3^2}{4.7}+\frac{3^2}{7.10}+...+\frac{3^2}{97.100}\)
\(A=\frac{3^2}{3}\cdot\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+....+\frac{1}{97}-\frac{1}{100}\right)\)
\(A=3\cdot\left(1-\frac{1}{100}\right)\)
\(A=3\cdot\frac{99}{100}=\frac{297}{100}\)
Vậy \(A=\frac{297}{100}\)
\(\dfrac{2}{1\times4}+\dfrac{2}{4\times7}+\dfrac{2}{7\times10}+\cdot\cdot\cdot+\dfrac{2}{97\times100}\)
\(=\dfrac{2}{3}\times\left(\dfrac{3}{1\times4}+\dfrac{3}{4\times7}+\dfrac{3}{7\times10}+\cdot\cdot\cdot+\dfrac{3}{97\times100}\right)\)
\(=\dfrac{2}{3}\times\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+\cdot\cdot\cdot+\dfrac{1}{97}-\dfrac{1}{100}\right)\)
\(=\dfrac{2}{3}\times\left(1-\dfrac{1}{100}\right)\)
\(=\dfrac{2}{3}\times\dfrac{99}{100}\)
\(=\dfrac{33}{50}\)
#\(Toru\)
Ta đặt biểu thức là :
A = 2/1 x 4 + 2/4 x 7 + 2/7 x 10 + ... + 2/97 x 100
A = 2 - 2/4 + 2/4 - 2/7 + 2/7 - 2/10 + ... + 2/97 - 2/100
A = 2 - 2 /100
A = 99/50
\(\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{97.100}\)
= \(\frac{2}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)
= \(\frac{2}{3}\left(1-\frac{1}{100}\right)\)
= \(\frac{2}{3}.\frac{99}{100}=\frac{33}{50}\)
A = 1 + 3 + 5 + ... + 101
A = ( 101 + 1) x 51 : 2
A = 2061
B = 1 + 4 + 7 + 10 + ...+ 100
B = ( 1 + 100) x 34 :2
B = 1717
A=2/3 x (1-1/4+1/4-1/7+......+1/97-1/100)
= 2/3 x (1-1/100)
= 2/3 x 99/100
= 33/50
A=\(\frac{2}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+........+\frac{3}{97.100}\right)\)
=\(\frac{2}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...........+\frac{1}{97}-\frac{1}{100}\right)\)
=\(\frac{2}{3}.\left(1-\frac{1}{100}\right)\)
=\(\frac{2}{3}.\frac{99}{100}\)
=\(\frac{33}{50}\)