K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2016

 Đặt n = a²(b+c)+b²(c+a)+c²(a+b) 
Xuất phát từ đẳng thức: (cái này bạn tự biến đổi tương đương nhé) 
(a+b)(b+c)(c+a) = a²(b+c)+b²(c+a)+c²(a+b) - 2abc 
=> n = (a+b)(b+c)(c+a) - 2abc 
Dễ thấy với a,b,c > 0 thì: tồn tại 1 trong 3 số a+b hoặcb+c hoặc c+a chẵn 
=> (a+b)(b+c)(c+a) chia hết cho 2 hay n = (a+b)(b+c)(c+a) - 2abc chia hết cho 2 
Để n nguyên tố thì chỉ có thể xảy ra n = 2. Nhưng do: 
n = a²(b+c)+b²(c+a)+c²(a+b) ≥ 1².(1+1) + 1².(1+1) + 1².(1+1) = 6 > 2 nên không thỏa mãn. 
Vậy trong a,b,c có ít nhất 1 số bằng 0. Nhưng a,b,c cũng không thể đồng thời bằng 0 và không thể có 2 số bằng 0 (vì khi đó đều dẫn tới n = 0) nên chỉ có thể xảy ra trường hợp: a,b,c có đúng một số bằng 0 
Không mất tính tổng quát giả sử: c = 0 thì: n = ab(b+a) 
để n nguyên tố thì: ab = 1 hoặc a+b = 1 nhưng a+b ≥ 1+1=2 nên ab = 1 => a = b = 1 
Khi đó: n = 1.1.(1+1) = 2 (thỏa) 
Kết luận: ta có các cặp số (a,b,c) thỏa mãn bài là (1,1,0) và các hoán vị. 
Khi đó n = 2 nguyên tố. 

3 tháng 7 2017

3. 1998=a+b+c (a,b,c\(\in N\))

Xét a^3+b^3+c^3 - (a+b+c)=a(a-a)(a+1)+b(b-1)(b+1)+c(c-1)(c+1)

mà n(n-1)(n+1) luôn chia hết cho 6 với mọi số tự nhiên n

=>a^3+b^3+c^3 chia hết cho 6 (a+b+c chia hết cho 6)

19 tháng 9 2016

thtfgfgfghggggggggggggggggggggg

Ta có : \(P=a^2\left(b+c\right)+b^2\left(a+c\right)+c^2\left(a+b\right)=\left(a+b\right)\left(b+c\right)\left(c+a\right)-2abc\)

Gỉa sử : \(\left(a+b\right);\left(b+c\right);\left(c+a\right)\)là 3 số lẻ \(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\)lần lượt bằng \(2x+1;2y+1;2z+1\left(x;y;z\in N\right)\)

\(\Rightarrow a+b+b+c+c+a=2\left(a+b+c\right)=2\left(x+y+z\right)+3⋮2\)( vô lí )

Suy ra tồn tại 1 số chẵn trong 3 số \(\left(a+b\right);\left(b+c\right);\left(c+a\right)\)

\(\Rightarrow x⋮2\Leftrightarrow x=2\)

Đưa bài toán về tìm số tự nhiên \(a,b,c\)sao cho \(\left(a+b\right);\left(b+c\right);\left(c+a\right)\)

\(\Leftrightarrow2abc+2=\left(a+b\right);\left(b+c\right);\left(c+a\right)\ge\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\)

Tiếp tục sử dụng bất đẳng thức \(\left(a+b+c\right)\left(ab+ca+ca\right)\ge9abc\)

\(\Rightarrow2abc+2\ge8abc\Leftrightarrow abc\le\frac{1}{3}\)

\(\Rightarrow abc=0\)nên tồn tại 1 số 0 ( nếu tồn tại 2 số   thì \(x=0\)nên loại )

Gỉa sử \(c=0\Rightarrow x=ab\left(a+b\right)=2\Leftrightarrow a=b=1\)

Vậy \(\left(a,b,c\right)=\left(1,1,0\right)\)và hoán vị thì x là số nguyên tố 

4 tháng 7 2020

mk chưa học đến lớp 9 

xin lỗi bn nha