K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2016

\(S=1:3+1:15+1:35+...+1:9999\)

\(S=\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{9999}\)

\(S=2\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\right)\)

\(2S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

\(2S=1-\frac{1}{101}\)

\(2S=\frac{100}{101}\)

\(S=\frac{100}{101}:2\)

\(S=\frac{50}{101}\)

30 tháng 6 2016

\(=\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+.......+\frac{1}{99\cdot101}=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{99}-\frac{1}{101}=1-\frac{1}{101}=\frac{100}{101}\)

30 tháng 6 2016

\(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+.....+\frac{1}{9999}=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+.....+\frac{1}{99.}\)\(\frac{1}{99.101}\)

                                                            \(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{99}-\frac{1}{101}\)

                                                              \(=1-\frac{1}{101}=\frac{100}{101}\)

                                                          

6 tháng 4 2016

1/3+1/15+1/35+1/63+1/99+……+1/9999
=1/(1×3)+1/(3×5)+1/(5×7)+1/(7×9)+1/(9×11)+……+1/(99×101)
=1/2(1-1/3)+1/2(1/3-1/5)+1/2(1/5-1/7)+1/2(1/7-1/9)+1/2(1/9-1/11)+……+1/2(1/99-1/101)
=1/2(1-1/3+1/3-1/5+1/5-1/7+1/7-1/9+1/9-1/11+……+1/99-1/101)
=1/2(1-1/101)
=1/2×(100/101)
=50/101

6 tháng 4 2016

1/3+1/15+1/35+1/63+1/99+……+1/9999

=1/(1×3)+1/(3×5)+1/(5×7)+1/(7×9)+1/(9×11)+……+1/(99×101)

=1/2(1-1/3)+1/2(1/3-1/5)+1/2(1/5-1/7)+1/2(1/7-1/9)+1/2(1/9-1/11)+……+1/2(1/99-1/101)

=1/2(1-1/3+1/3-1/5+1/5-1/7+1/7-1/9+1/9-1/11+……+1/99-1/101)

=1/2(1-1/101)

=1/2×(100/101)

=50/101 

21 tháng 7 2019

\(\left(1-\frac{1}{3}\right)+\left(1-\frac{1}{15}\right)+...+\left(1-\frac{1}{9999}\right)\)

\(\left(1-\frac{1}{1.3}\right)+\left(1-\frac{1}{3.5}\right)+...+\left(1-\frac{1}{99.101}\right)\)(50 cặp)

\(\left(1+1+1+...+1\right)-\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{99.101}\right)\)(50 số hạng 1)

\(1.50-\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right)\) 

\(50-\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(50-\frac{1}{2}.\left(1-\frac{1}{101}\right)\)

\(50-\frac{1}{2}.\frac{100}{101}\)

\(50-\frac{50}{101}\)

\(\frac{5000}{101}\)

15 tháng 6 2017

\(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{15}-\dfrac{1}{35}-\dfrac{1}{63}-...-\dfrac{1}{9999}\)

\(=\dfrac{1}{2}-\left(\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{1}{35}+\dfrac{1}{63}+...+\dfrac{1}{9999}\right)\)

\(=\dfrac{1}{2}-\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+...+\dfrac{1}{99.101}\right)\)

\(=\dfrac{1}{2}-\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)

\(=\dfrac{1}{2}-\dfrac{1}{2}\left(1-\dfrac{1}{101}\right)\)

\(=\dfrac{1}{2}-\dfrac{1}{2}.\dfrac{100}{101}\)

\(=\dfrac{1}{2}-\dfrac{50}{101}\)

\(=\dfrac{1}{202}.\)

15 tháng 6 2017

h nghĩ lại thấy mk ngu v~

26 tháng 9 2023

\(S=\dfrac{1}{15}+\dfrac{1}{35}+...+\dfrac{1}{9999}\)

\(=\dfrac{1}{3\cdot5}+\dfrac{1}{5\cdot7}+...+\dfrac{1}{99\cdot101}\)

\(=\dfrac{1}{2}\cdot\left(\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{99\cdot101}\right)\)

\(=\dfrac{1}{2}\cdot\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)

\(=\dfrac{1}{2}\cdot\left(\dfrac{1}{3}-\dfrac{1}{101}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{98}{303}\)

\(=\dfrac{49}{303}\)

Vậy \(S=\dfrac{49}{303}\)

#\(Toru\)

13 tháng 1 2016

Tui nghĩ là 49/303 

13 tháng 1 2016

49/303 chắc chắn lun mình giải rùi tick nha

1 tháng 1 2017

1/3 + 1/15 + 1/35 + 1/63 + 1/99 + 9999

= 1/3 + ( 1/5 + 1/35 + 1/63 ) + 1/99 = 9999

= 1/3 + 1111/9999 + 1/99

= 3333/9999 + 1111/9999 +101/9999

= 4545/9999

1 tháng 1 2017

4546/9999

10 tháng 6 2020

\(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{9999}=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)

\(=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right)=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{101}\right)=\frac{1}{2}.\frac{100}{101}=\frac{50}{101}\)