So sanh: \(A=\frac{2014^{2013}+1}{2014^{2014}+1}\) va \(B+\frac{2014^{2012}+1}{2014^{2013}+1}\)
Giup minh nha, thanks cac ban
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: \(A=\frac{2014^{2013}+1}{2014^{2013}-1}=\frac{2014^{2013}-1+2}{2014^{2013}-1}=1+\frac{2}{2014^{2013}-1}\)
\(B=\frac{2014^{2013}-1}{2014^{2013}-3}=\frac{2014^{2013}-3+2}{2014^{2013}-3}=1+\frac{2}{2014^{2013}-3}\)
\(\Rightarrow\frac{2}{2014^{2013}-1}< \frac{2}{2014^{2013}-3}\)
\(\Rightarrow1+\frac{2}{2014^{2013}-1}< 1+\frac{2}{2014^{2013}-3}\)
=> A < B
Gợi ý nhé: bạn hãy so sánh 2014A và 2014B rồi suy ngược lại A và B
Ta có:
2014A=20142014+ 2014/20142014+1=1+2013/20142014+1
2014B=20142013+2014/20142013+1=1+2013/20142013+1
vì 1+2013/20142014+1<1+2013/20142013+1 nên 10A < 10B
suy ra A<B
\(\frac{2014^{2013}+1}{2014^{2013}-13}\)lớn hơn 1 là \(\frac{14}{2014^{2013}-13}\)
\(\frac{2014^{2012}+8}{2014^{2012}-11}\)lớn hơn 1 là \(\frac{19}{2014^{2012}-11}\)
\(\frac{14}{2014^{2013}-13}\)\(< \)\(\frac{19}{2014^{2012}-11}\)
\(\Rightarrow A< B\)
Ta có: 1- 2012/2013=1/2013
1- 2013/2014=1/2014
Mà 1/2013>1/2014
vậy 2012/2013<2013/2014
Đặt B = 2013^2013+1/2013^2014+1
Ta có: \(B=\frac{2013^{2013}+1}{2013^{2014}+1}< \frac{2013^{2013}+1+2012}{2013^{2014}+1+2012}=\frac{2013^{2013}+2013}{2013^{2014}+2013}=\frac{2013\left(2013^{2012}+1\right)}{2013\left(2013^{2013}+1\right)}=\frac{2013^{2012}+1}{2013^{2013}+1}=A\)
Vậy A > B
a = \(\frac{2013}{2014}+\frac{2014}{2015}=\frac{2014-1}{2014}+\frac{2015-1}{2015}\)
\(=1-\frac{1}{2014}+1-\frac{1}{2015}\)
\(=2-\left(\frac{1}{2014}+\frac{1}{2015}\right)>1\) (1)
b = \(\frac{2013+2014}{2014+2015}
havsvsuvsvsjzbsvshshsvshjsvdhsjvdhsjdvdhdjdhdhsjdhdhsudghsushdhshshgdgshshdgshdhshdhdghshdgdvshhshdvdgdhshgdgd
h
\(A=\frac{2014^{2013}+1}{2014^{2014}+1}<\frac{2014^{2013}+1+2013}{2014^{2014}+1+2013}\)
\(=\frac{2014\left(2014^{2012}+1\right)}{2014\left(2014^{2013}+1\right)}\)
\(=\frac{2014^{2012}+1}{2014^{2013}+1}\)\(=B\)
=> A < B