K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2022

đầu bài lúc vẽ hình đâu có điểm D đâu, sao tự nhiên lúc hỏi lòi đâu zậy ạ? Bạn xem xem có sai đầu bài ko?

13 tháng 2 2020

a) Xét tam giác ABD có :

AB = AD (gt)

Suy ra tam giác ABD cân tại BAD

Suy ra góc ABD = góc ADB ( 2 góc đáy)

Ta có : góc BAD + góc CAD = góc BAC

mà góc BAC = 120 độ ; góc BAD =góc CAD (gt)

Suy ra 2BAD= 120 độ 

Suy ra BAD= 120 độ chia 2

Suy ra BAD =60 độ 

Ta lại có tam giác BAD cân tại BAD

Suy ra BDA =DBA =(180 độ - BAD) chia 2

mà BAD = 60 độ 

Suy ra BDA=DBA= (180 độ - 60 độ ) chia 2

Suy ra BDA=DBA = 60độ 

Xét tam giác BDA có 

BDA=DBA=BAD=60 độ 

Suy ra tam giác BDA đều

24 tháng 5 2018

Trên tia AE lấy AD = AB \(\Rightarrow\)DE = AC

\(\Delta ABD\)cân có \(\widehat{BAD}=60^O\)nên là tam giác đều, suy ra AD = DB

\(\Delta DBE=\Delta ABC\)( c.g.c ) \(\Rightarrow\)\(\widehat{B_1}=\widehat{B_2}\)và BE = BC.

Ta lại có : \(\widehat{B_1}+\widehat{B_3}=60^o\)nên \(\widehat{B_2}+\widehat{B_3}=60^o\)

\(\Delta BCE\)cân ở B có \(\widehat{CBE}=60^o\)nên là tam giác đều

24 tháng 5 2018

A B C E D 1 3 2

26 tháng 12 2020

Chắc  là bài trung bình cộng bạn nhỉ

26 tháng 12 2020

không phải bn ạ. đây là tam giác cân:v

6 tháng 8 2016

Đây nhé :)

undefined

undefined

14 tháng 2 2016

moi hok lop 6

27 tháng 12 2015

Lấy D ∈ AE sao cho AD = AC => DE = AB và ∆DAC đều
Xét ∆ABC và ∆DEC có:
+ AB = DE
+ góc BAC = góc EDC = 120º (bạn tự chứng minh)
+ AD = DC
=> ∆ABC = ∆DEC(c.g.c) => BC = EC và góc ACB = góc DCE
=> góc ACB + góc BCD = góc DCE + góc BCD
=> góc ECB = góc ACD = 60º
Xét ∆BEC có BC = EC và góc ECB = 60º => ∆BEC là tam giác cân có 1 góc = 60º
=> ∆BEC là tam giác đều.

22 tháng 4 2020

A B C D E

a, xét tam giác ABD và tam giác AED có AB = AE (Gt)

AD chung

^BAD = ^EAD do AD Là pg của ^BAC (Gt)

=> tg ABD = tg AED (c-g-c)

=> BD = ED (Đn)

=> tam giác BED cân tại D (đn)

b, tg ABC có AD là pg => DC/AC = DB/AB (tc)

có AC > AB (GT) 

=> DC > DB

Bài làm

a) Xét tam giác ADB và tam giác ADE có: 

AB = AE ( gt )

\(\widehat{BAD}=\widehat{EAD}\)( Do AD phân giác )

AD chung 

=> Tam giác ADB = tam giác ADE ( c.g.c )

=> BD = DE 

=> Tam giác DBE cân ở D.

b) Kẻ BH là tia đối của tia BA.

Xét tam giác BAC có: \(\widehat{CBH}=\widehat{BAC}+\widehat{ACB}\)

=> \(\widehat{ACB}< \widehat{CBH}\) 

Hay \(\widehat{DCE}< \widehat{CBH}\)                                  (1) 

Vì tam giác ADB = tam giác ADE ( cmt )

=> \(\widehat{ABD}=\widehat{AED}\)

Mà \(\widehat{ABD}+\widehat{DBH}=180^0\)( Hai góc kề bù )

\(\widehat{AED}+\widehat{DEC}=180^0\)( Hai góc kề bù )

=> \(\widehat{DBH}=\widehat{DEC}\) 

Hay \(\widehat{CBH}=\widehat{DEC}\)                          (2) 

Từ (1) và (2) => \(\widehat{DCE}< \widehat{DEC}\)

Xét tam giác DEC có: 

\(\widehat{DCE}< \widehat{DEC}\)

=> DE < DC ( Qua hệ giữ cạnh và góc đối diện )

Mà DE = BD ( cmt )

=> BD < DC

Hay DC > DB ( đpcm )