Tìm x,y ϵ z biết:
x.y=1261
x-y=-84
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có x= y-84
thay vào xy=1261 ta có: y(y-84)=1261
=> \(y^2\)-84y=1261
=> (y-97)(y+13)=0
=> y=97 hoặc y = -13
với y=97 => x=13
với y= -13 => x=-97
vậy với x y nguyên ta có(x;y )=(-97;-13); (13;97)
xy + 3x - 7y = 21 (1)
xy + 3x - 2y = 11 (2)
LẤy (1) - (2) => xy + 3x - 7y - ( xy + 3x - 2y) = 21 - 11 = 10
=> xy + 3x - 7y - xy - 3x + 2y = 10
=> -5y = 10
=> y = -2 Thay vào ta có
x.y +3x - 7y = x. (-2) + 3. x - 7 (-2) = 21
=> -2x + 3x + 14 = 21
=> x = 21 - 14 = 7
Vậy x = 7 ; y = -5
Tick đúng nha you
\(2\left(x+y\right)+xy=x^2+y^2\\ \Leftrightarrow x^2+y^2-2x-2y-xy=0\\ \Leftrightarrow2x^2+2y^2-4x-4y-2xy=0\\ \Leftrightarrow\left(x^2-4x+4\right)+\left(y^2-4y+4\right)+\left(x^2-2xy+y^2\right)=8\\ \Leftrightarrow\left(x-2\right)^2+\left(y-2\right)^2+\left(x-y\right)^2=8\)
\(\Leftrightarrow\begin{matrix}\left(x-2\right)^2=0;&\left(y-2\right)^2=4;&\left(x-y\right)^2=4\\\left(x-2\right)^2=4;&\left(y-2\right)^2=0;&\left(x-y\right)^2=4\\\left(x-2\right)^2=4;&\left(y-2\right)^2=4;&\left(x-y\right)^2=0\end{matrix}\)
\(\Leftrightarrow\begin{matrix}x=2;&y=4\\x=2;&y=0\\x=4;&y=2\\x=0;&y=2\\x=0;&y=0\\x=2;&y=2\end{matrix}\)
Vậy có 6 cặp số thỏa mãn:
\(\left(x;y\right)\in\left\{\left(2;4\right);\left(2;0\right);\left(4;2\right);\left(0;2\right);\left(0;0\right);\left(2;2\right)\right\}\)
3/ Ta có:
\(A=\dfrac{1-2x}{x+3}\)
\(A=\dfrac{-2x+1}{x+3}\)
\(A=\dfrac{-2x-6+7}{x+3}\)
\(A=\dfrac{-2\left(x+3\right)+7}{x+3}\)
\(A=-2+\dfrac{7}{x+3}\)
A nguyên khi \(\dfrac{7}{x+3}\) nguyên
⇒ 7 ⋮ \(x+3\)
\(\Rightarrow x+3\inƯ\left(7\right)\)
\(\Rightarrow x+3\in\left\{1;-1;7;-7\right\}\)
\(\Rightarrow x\in\left\{-2;-4;4;-10\right\}\)
Lời giải:
Ta thấy: $\sqrt{(x-2024)^2}\geq 0$ với mọi $x\in\mathbb{R}$
$|x+y-4z|\geq 0$ với mọi $x,y,z\in\mathbb{R}$
$\sqrt{5y^2}\geq 0$ với mọi $y\in\mathbb{R}$
Do đó để tổng của chúng bằng $0$ thì bản thân mỗi số đó phải nhận giá trị $0$
Hay:
$\sqrt{(x-2024)^2}=|x+y-4z|=\sqrt{5y^2}=0$
$\Leftrightarrow x=2024; y=0; z=\frac{x+y}{4}=506$
\(\dfrac{4}{x}-\dfrac{y}{2}=\dfrac{1}{4}\Leftrightarrow\dfrac{8-xy}{2x}=\dfrac{1}{4}\Leftrightarrow\dfrac{16-2xy}{4x}=\dfrac{x}{4x}\)
\(\Rightarrow16-2xy=x\Leftrightarrow x+2xy=16\Leftrightarrow x\left(1+2y\right)=16\)
\(\Rightarrow x;1+2y\inƯ\left(16\right)=\left\{\pm1;\pm2;\pm4;\pm8;\pm16\right\}\)
x | 1 | -1 | 2 | -2 | 4 | -4 | 8 | -8 | 16 | -16 |
2y + 1 | 16 | -16 | 8 | -8 | 4 | -4 | 2 | -2 | 1 | -1 |
y | 15/2 ( ktm ) | -17/2 ( ktm ) | 7/2 ( ktm ) | -9/2 ( ktm ) | 3/2 ( ktm ) | -5/2 ( ktm ) | 1/2 ( ktm ) | -3 / 2 ( ktm ) | 0 | -1 |
đơn giản
lập hệ rùi giải ra