K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2016

C= (1.3.5.....199)/(2.4.6.....200)

=> C^2= (1^2. 3^2. 5^2......199^2)/(2^2. 4^2. 6^2......200^2)

Ta có k^2 > k^-1 = (k-1)(k+1) nên 2^2 > 1.3

                                                 4^2 > 3.5 

                                                 ....

                                                 200^2 > 199.201

=> C^2 < (1^2.3^2.5^2.....199^2) / (1.3)(3.5)(5.7).....(199.201)

ta có:  (1^2.3^2.5^2.....199^2) / (1.3)(3.5)(5.7).....(199.201) 

=1/201

Do đó C^2 <1/201

Vậy C^2 < 1/201

1 tháng 4 2017

 Ta có : \(C=\frac{1}{2}\times\frac{3}{4}\times.....\times\frac{199}{200}\)

      \(\Rightarrow C< \frac{2}{3}\times\frac{4}{5}\times.......\times\frac{200}{201}\)

      \(\Rightarrow C^2< \frac{2}{3}\times\frac{4}{5}\times......\times\frac{200}{201}\times\frac{1}{2}\times\frac{3}{4}\times.....\times\frac{199}{200}\)

     \(\Rightarrow C^2< \frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times........\times\frac{199}{200}\times\frac{200}{201}\)

     \(\Rightarrow C^2< \frac{1}{201}\left(đ.p.c.m\right)\)

8 tháng 4 2016

2A hay A^2?

23 tháng 10 2017


A=[(3²-1)/3²].[(4²-1)/4²].[(5²-1)/5²] …[(50²-1)/50²] 
=(3-1)(3+1)(4-1)(4+1)(5-1)(5+1)…(50-1)(... /(3².4².5²…50²) 
= (3-1).(4-1).(5-1) … (50-1) .(3+1).(4+1).(5+1) … (50+1) (3².4².5²…50²) 
= 2.3.4 …49 . 4.5.6…51 /(3².4².5²…50²) 
=2.3. (4.5…49 . 4.5 … 49) . 50. 51 /(3².4².5²…50²) 
= 2.3.50.51(4².5²…49²)/(3².4².5²…50²) 
=2.3.50.51/(3².50²) 
=2.51/(3.50)=102/150=17/25 

2/Cho dãy số: 1(1/3); 1(1/8); 1(1/15); 1(1/24); 1(1/35); ... 
Có lẽ viết 1(1/3) là hỗn số tương đương với 4/3. 
a) Số hạng tổng quát : 1[1/[(n+1)²-1)] = (n+1)²/[(n+1)²-1]=(n+1)²/[n(n+1)] 
b) 
(đây là nghịch đảo của bài 1. Mẫu số phân tích tương tự tử số ở bài 1) 
Tích của 98 số hạng đầu là: 
P=[2²/(2²-1)].[3²/(3²-1)][4²/(4²-1)] …[99²/(99²-1)] 
= (2².3².4²…99²) /[(2²-1).(3²-1)… (99²-1)] 
= (2².3².4²…99²) /[(2-1).(3-1)… (99-1) . (2+1).(3+1)… (99+1)] 
= (2².3².4²…99²) /[1.2.3… 98 . 3.4… 98.99.100] 
= (2².3².4²…99²) /[1.2.(3… 98 . 3.4… 98).99.100] 
= (2².3².4²…99²) /[1.2.(3… 98 . 3.4… 98).99.100] 
= (2².3².4²…99²) /[1.2.(3… 98 . 3.4… 98).99.100] 
= (2².99²) /[1.2.99.100] 
=(2.99)/(1.100) 
=99/50 

3) 
C= (1/2).(3/4).(5/6).....(199/200). 
C= (1.3.5….199)/(2.4.6…200) 

C²= 1².3².5²….199²/(2².4².6²…200²) 
Ta có: k²>k²-1=(k-1)(k+1) nên 2²>1.3; 4²>3.5 … 200²>199.201. 
=> 
C² < 1².3².5²….199²/[(1.3).(3.5).(5.7)…(199.2...‡ 
=1².3².5²….199²/(1.3.3.5.5.7…199.201) 
=1².3².5²….199²/(1.3².5².7²…199².201) 
=1/201 

4) 
(cũng tương tự như bài 3) 
D= (1/2).(3/4).(5/6)…(99/100) 
D=(1.3.5..99)/(2.4.6…100) 
D²=(1².3².5²..99²)/(2².4².6²…100²) 

Làm nhỏ bớt mẫu số bởi: (k-1)(k+1)<k² 
D²=[(1².3².5²… 99²)]/(2².4².6²…100²) 
< 1².3².5²…99²/(1.3.3.5.5.7…99.01) 
=1².3².5²…99²/(1.3².5².7²…99².101) 
=1/101<1/100=1/10² 
=>D<1/10 

D²=(1².3².5²…99²)/(2².4².6²…100²) 
Giảm tử số bởi k²>(k-1)(k+1) 
D²=(1².3².5²..99²)/(2².4².6²…100²) 
>1².(2.4)(4.6)…(98.100) /(2².4².6²…100²) 
=2.4.4.6.6.8….96.98.98.100/(2².4².6²…10...‡ 
=2.4².6²…98².100/(2².4².6²…100²) 
=2.100/(2².100²) 
=1/200 > 1/225=1/15² 

=>D>1/15

13 tháng 1 2017

Nhìn Rối tinh lên bố ai biết thế nào?

29 tháng 7 2018

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}=\frac{99}{100}\)

\(B=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}+\frac{2}{99.101}\)

\(=1-\frac{1}{3}+\frac{!}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

\(=1-\frac{1}{101}=\frac{100}{101}\)

\(C=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+....+\frac{1}{1024}+\frac{1}{2048}\)

\(\Rightarrow\)\(2C=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+....+\frac{1}{512}+\frac{1}{1024}\)

\(\Rightarrow\)\(2C-C=\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1024}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{2048}\right)\)

\(\Leftrightarrow\)\(C=1-\frac{1}{2048}=\frac{2047}{2048}\)

29 tháng 7 2018

Câu A bạn quên 1/4.5 kìa , với câu D đâu >>>
 

27 tháng 7 2015

b. \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-....+\frac{1}{2003}\)\(\frac{1}{2013}\)

c. \(5.\left(\frac{1}{14}+\frac{1}{84}+\frac{1}{204}+\frac{1}{374}\right)\)= 5. \(\frac{1}{11}\)\(\frac{5}{11}\)

Mình biết 2 câu này thôi, thông cảm nhá...!!!

26 tháng 1 2016

d) Ta có: 100-(1+1/2+1/3+1/4+...+1/100)

=1x100-(1+1/2+1/3+1/4+...+1/100)

=(1-1)+(1-1/2)+(1-1/3)+(1-1/4)+....+(1-1/100)

=1/2+2/3+3/4+...+99/100

29 tháng 6 2019

TL:

a)\(2+4+6+...+2000=\frac{\left(2+2000\right).\left[\left(2000-2\right):2+1\right]}{2}\) 

\(=1001000\)

Câu b tương tự nha bạn:)

c) Đặt 1.2+2.3+....+99.100 =A

\(3A=1.2.3+2.3.\left(4-1\right)+...+99.100.\left(101-98\right)\) 

\(3A=1.2.3+2.3.4-1.2.3+...99.100.101-98.99.100\) 

\(3A=99.100.101\) 

\(A=333300\) 

Vậy .....

5 tháng 9 2016

a) Đặt A= 2+4+6+...+1998+2000 

Ta có: A=(2+2000).1000:2

=> A=2002.1000:2

=> A=2002000:2

=> A=1001000

b) Đặt B= 5+9+13+...+1997+2001 

=> B=(2001+5).500:2

=> B=2006.500:2

=> B=1003000:2

=> B=501500

c)Đặt S= 1.2 + 2.3 + 3.4 + ...+ 99.100
=> 3S = 1.2.3+2.3.3+3.4.3+...+98.99.3+99.100.3
3S= 1.2.3+2.3(4-1)+3.4(5-2)+...+98.99(100-97)+99.100(101-98)
3S= 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...-97.98.99+99.100.101-98.99.100
3S = 99.100.101 => 3S = 3.33.100.101 
=> S=33.100.101= 333300