Cho tam giác MNP vuông góc tại M,có tia phân giác của góc.Cắt MP tại D.Kẻ DH vuông với NP tại H (H thuộc BC) a. Chứng minh rằng tâm giác MND=tam giác HND b. Gọi K là giao điểm của MN và HD.Chứng mình MK=HD c. Góc HDP=2góc MND
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔMNQ vuông tại M và ΔHNQ vuông tại H có
NQ chung
\(\widehat{MNQ}=\widehat{HNQ}\)
Do đó: ΔMNQ=ΔHNQ
b: ta có: ΔMNQ=ΔHNQ
nên NM=NH
hay ΔNHM cân tại N
mà \(\widehat{MNH}=60^0\)
nên ΔNHM đều
1: Xét ΔNMI vuông tại M và ΔNKI vuông tại K có
NI chung
\(\widehat{MNI}=\widehat{KNI}\)
Do đó: ΔNMI=ΔNKI
Suy ra: NM=NK
hay ΔNMK cân tại N
2: Xét ΔMIQ vuông tại M và ΔKIP vuông tại K có
IM=IK
\(\widehat{MIQ}=\widehat{KIP}\)
Do đó: ΔMIQ=ΔKIP
Suy ra: MQ=KP
Ta có: NM+MQ=NQ
NK+KP=NP
mà NM=NK
và MQ=KP
nên NQ=NP
hayΔNQP cân tại N
3: Xét ΔNQP có
NM/MQ=NK/KP
nên MK//QP
a) xét \(\Delta MNP\)VUÔNG TẠI M CÓ
\(\Rightarrow NP^2=MN^2+MP^2\left(PYTAGO\right)\)
THAY\(NP^2=4^2+3^2\)
\(NP^2=16+9\)
\(NP^2=25\)
\(\Rightarrow NP=\sqrt{25}=5\left(cm\right)\)
XÉT \(\Delta MNP\)CÓ
\(\Rightarrow NP>MN>MP\left(5>4>3\right)\)
\(\Rightarrow\widehat{M}>\widehat{P}>\widehat{N}\)( QUAN HỆ GIỮA CẠNH VÀ GÓC ĐỐI DIỆN)
B) xét \(\Delta\text{ CPM}\)VÀ\(\Delta\text{CPA}\)CÓ
\(PM=PA\left(GT\right)\)
\(\widehat{MPC}=\widehat{APC}=90^o\)
PC LÀ CAH CHUNG
=>\(\Delta\text{ CPM}\)=\(\Delta\text{CPA}\)(C-G-C)
c)
\(\Delta CPM=\Delta CPA\left(cmt\right)\)
\(\Rightarrow\widehat{CMP}=\widehat{CPA}\left(\text{hai góc tương ứng}\right)\)
\(\text{Ta có: }\)\(\widehat{MNA}+\widehat{NAM}=90^o\left(\Delta MNA\perp\text{ tại M}\right)\)
\(\widehat{NMC}+\widehat{CMP}=90^o\)
\(\Rightarrow\widehat{MNA}+\widehat{NAM}=\)\(\widehat{NMC}+\widehat{CMP}\)
\(\Rightarrow\widehat{MNA}=\widehat{NMC}\left(\widehat{CMP}=\widehat{NAM}\right)\)
\(Hay:\)\(\widehat{MNC}=\widehat{NMC}\)
\(\Rightarrow\Delta NMC\text{ cân}\)
\(\Rightarrow CN=CM\left(đpcm\right)\)
Làm
a) Xét hai tam giác vuông NMD và tam giác vuông NED có :
ND là cạnh chung
góc MND = góc END ( gt )
Do đó : tam giác NMD = tam giác NED ( cạnh huyền - góc nhọn )
b) Theo câu a) ta có : Tam giác NMD = tam giác NED
=> +) NM = NE nên N thuộc đường trung trực của ME
+) DM = DE nên D thuộc đường trung trực của của ME
Vậy ND là đường trung trực của ME
Vì phần c của cậu sai đề ( nối B với F nhưng đề bài k có B )
Còn phần d thì chưa đủ ý để tìm đc MD
HỌC TỐT
a: Xét ΔNMD vuông tại M và ΔNED vuông tại E có
ND chung
góc MND=góc END
=>ΔNMD=ΔNED
=>MN=NE
b: Xét ΔNFP có
PM,FE là đường cao
PM cắt FE tại D
=>D là trực tâm
=>ND vuông góc FP
a: Xét ΔNMK co
NE vừa là đường cao, vừa là phân giác
=>ΔNMK cân tại N
=>NM=NK
Xét ΔNMD và ΔNKD có
NM=NK
góc MND=góc KND
ND chung
=>ΔMND=ΔKND
=>góc NKD=90 độ
=>DK vuông góc NP
b: Xét ΔNKM có
MH,NE là đường cao
MH cắt NE tại I
=>I là trực tâm
=>KI vuông góc MN
=>KI//MP
a: Xét ΔMNE vuông tại E và ΔKNE vuông tại E có
NE chung
góc MNE=góc KNE
=>ΔMNE=ΔKNE
b: Xét ΔNMD và ΔNKD có
NM=NK
góc MND=góc KND
ND chung
=>ΔNMD=ΔNKD
=>góc NKD=90 độ
=>DK vuông góc NP
a) Xét ΔMND vuông tại M và ΔHND vuông tại H có
ND chung
\(\widehat{MND}=\widehat{HND}\)(ND là tia phân giác của \(\widehat{MNH}\))
Do đó: ΔMND=ΔHND(cạnh huyền-góc nhọn)
ko biết :)