K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔABM vuông tại M và ΔACM vuông tại M có 

AB=AC(ΔBAC cân tại A)

AM chung

Do đó: ΔABM=ΔACM(Cạnh huyền-cạnh góc vuông)

Suy ra: BM=CM(hai cạnh tương ứng)

mà BM+CM=BC(M nằm giữa B và C)

nên \(BM=CM=\dfrac{BC}{2}=\dfrac{6}{2}=3\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABM vuông tại M, ta được:

\(AB^2=AM^2+BM^2\)

\(\Leftrightarrow AM^2=AB^2-BM^2=5^2-3^2=16\)

hay AM=4(cm)

Vậy: AM=4cm

AH
Akai Haruma
Giáo viên
13 tháng 12 2021

H là điểm nào hả bạn?

13 tháng 12 2021

Thêm ạ@!

a: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có

BC chung

\(\widehat{EBC}=\widehat{DCB}\)

Do đó: ΔEBC=ΔDCB

Suy ra: \(\widehat{HCB}=\widehat{HBC}\)

hay ΔHBC cân tại H

=>HB=HC

mà AB=AC

nên AH là đường trung trực của BC

=>A,H,M thẳng hàng

b: BC=16cm nên BM=CM=8cm

=>AM=6cm

23 tháng 5 2022

a. Nối AM

Xét \(2\Delta:\Delta AMB\) và \(\Delta AMC\) có:

\(\left\{{}\begin{matrix}AM.chung\\AB=AC\left(gt\right)\\BM=BC\left(gt\right)\end{matrix}\right.\)

\(\Rightarrow\Delta AMB=\Delta AMC\left(c.c.c\right)\)

\(\Rightarrow\widehat{AMB}=\widehat{AMC}\)

Mà: \(\widehat{BMC}=180^o\)

\(\Rightarrow\widehat{AMB}=\widehat{AMC}=90^o\)

\(\Rightarrow AM.là.đường.cao\)

Mà H là giao của BD và CE

Vậy H là trực tâm của tam giác ABC

Vậy AH đi qua M

b. \(MC=16:2=8\left(cm\right)\)

Áp dụng định lý Pi - ta - go, suy ra:

\(AM^2+MC^2=AC^2\)

\(\Leftrightarrow AH=\sqrt{AC^2-MC^2}=\sqrt{10^2-8^2}=6\left(cm\right)\)

a: Xet ΔADB vuông tại D và ΔAEC vuông tại E có

góc A chung

=>ΔADB đồng dạng vơi ΔAEC

=>AD/AE=AB/AC
=>AD*AC=AE*AB; AD/AB=AE/AC

b: Xét ΔADE và ΔABC có

AD/AB=AE/AC

góc DAE chung

=>ΔADE đồng dạng với ΔABC

c: \(DB=\sqrt{5^2-3^2}=4\left(cm\right)\)

\(S_{BAC}=\dfrac{1}{2}\cdot4\cdot6=12\left(cm^2\right)\)

a) Xét ΔAHE vuông tại E và ΔABD vuông tại D có 

\(\widehat{EAH}\) chung

Do đó: ΔAHE\(\sim\)ΔABD(g-g)

Suy ra: \(\dfrac{AH}{AB}=\dfrac{AE}{AD}\)

hay \(AB\cdot AE=AH\cdot AD\)

b) Xét ΔEHA vuông tại E và ΔEBC vuông tại E có 

\(\widehat{AHE}=\widehat{CBE}\)(ΔAHE\(\sim\)ΔABD)

Do đó: ΔEHA\(\sim\)ΔEBC(g-g)

Suy ra: \(\dfrac{EH}{EB}=\dfrac{EA}{EC}\)

hay \(EA\cdot EB=EH\cdot EC\)

 

d) Ta có: ΔABC cân tại A(gt)

mà AD là đường cao ứng với cạnh đáy BC(Gt)

nên AD là đường trung tuyến ứng với cạnh BC

Suy ra: \(BD=DC=\dfrac{BC}{2}=\dfrac{6}{2}=3\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABD vuông tại D, ta được:

\(AD^2+BD^2=AB^2\)

\(\Leftrightarrow AD^2=5^2-3^2=16\)

hay AD=4(cm)

Xét ΔBEC vuông tại E và ΔBDA vuông tại D có 

\(\widehat{B}\) chung

Do đó: ΔBEC\(\sim\)ΔBDA(g-g)

Suy ra: \(\dfrac{BE}{BD}=\dfrac{BC}{BA}\)

\(\Leftrightarrow BE=\dfrac{6\cdot3}{5}=\dfrac{18}{5}=3.6\left(cm\right)\)

Áp dụng định lí Pytago vào ΔBEC vuông tại E, ta được:

\(BC^2=BE^2+EC^2\)

\(\Leftrightarrow EC^2=6^2-3.6^2=23.04\)

hay EC=4,8(cm)