Cho tam giác ABC AB nhỏ hơn AC , có 3 góc nhọn và đường cao AH. Qua H vẽ HM vuông góc với AC tại M và HN vuông góc với AC tại N.a Cho AC 6cm, AM 3cm. Chứng minh diện tích tam giác ACB gấp 4 lần tam giác AMNb Vẽ đường cao BD của tam giác ABC cắt AH tại E. Qua D vẽ đường thẳng song song với MN cắt AB tại F. Chứng minh góc AEF = ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔAMH vuông tại M và ΔAHB vuông tại H có
\(\widehat{MAH}\) chung
Do đó: ΔAMH\(\sim\)ΔAHB(g-g)
b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC, ta được:
\(AH\cdot AC=AH^2\)(đpcm)
a: BC=căn 6^2+8^2=10cm
AH=6*8/10=4,8cm
c:
Xét tứ giác ANHM có
góc ANH=góc AMH=góc MAN=90 độ
=>ANHM là hình chữ nhật
AD vuông góc MN
=>góc DAC+góc ANM=90 độ
=>góc DAC+góc AHM=90 độ
=>góc DAC+góc ABC=90 độ
=>góc DAC=góc DCA
=>DA=DC
góc DAC+góc DAB=90 độ
góc DCA+góc DBA=90 độ
mà góc DAC=góc DCA
nên góc DAB=góc DBA
=>DA=DB
=>DB=DC
=>D là trung điểm của BC
a, Xét \(\Delta AMH\&\Delta AHB\)có
\(AMH=AHB=90^o\)
\(MAH=HAB\) (Góc chung)
\(\Rightarrow\Delta AMH~\Delta AHB\left(g.g\right)\)
b , Xét \(\Delta ANH\&\Delta AHC\)có
\(ANH=AHC=90^O\)
\(NAH=HAC\) (Góc chung)
\(\Delta ANH~\Delta AHC\left(g.g\right)\)
\(\Rightarrow\frac{AN}{AH}=\frac{AH}{AC}\Rightarrow AN.AC=AH^2\)
c: Xét ΔAHB vuông tại H có HM là đường cao
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
a: Ta có: ΔAHB vuông tại H
=>\(AH^2+HB^2=AB^2\)
=>\(AH^2=10^2-6^2=64\)
=>\(AH=\sqrt{64}=8\left(cm\right)\)
b: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
=>\(\widehat{BAH}=\widehat{CAH}\)
=>AH là phân giác của góc BAC
c: Ta có: ΔAHB=ΔAHC
=>BH=CH
Xét ΔBMH vuông tại M và ΔCNH vuông tại N có
BH=CH
\(\widehat{B}=\widehat{C}\)
Do đó: ΔBMH=ΔCNH
d: Xét ΔABO vuông tại B và ΔACO vuông tại C có
AO chung
AB=AC
Do đó: ΔABO=ΔACO
=>OB=OC
=>ΔOBC cân tại O