K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2022

a) Chứng minh: tam giác ABD = tam giác AMD nhed

a: Xét ΔABD và ΔAMD có

AB=AM

\(\widehat{BAD}=\widehat{MAD}\)

AD chung

Do đó: ΔABD=ΔAMD

b: Ta có: ΔABD=ΔAMD

nên \(\widehat{ABD}=\widehat{AMD}\)

c: Xét ΔAID vuông tại I và ΔAKD vuông tại K có

AD chung

\(\widehat{IAD}=\widehat{KAD}\)

Do đó: ΔAID=ΔAKD

Suy ra: AI=AK

=>BI=KM

13 tháng 7 2018

cần cm IB=KM từ đó có AI=AK . suy ra tgAPK cân tại A. suy ra góc AKP=gocsIAD. từ đó có dpcm

15 tháng 3 2021

Thiếu dữ liệu nhé

15 tháng 3 2021

Bạn thiếu đề bài nhé!

19 tháng 12 2020

Bạn chú ý viết cách phần cho và phần yêu cầu.

a/ Xét t/g ABI và t/g ADI có

AI : chung

\(\widehat{BAI}=\widehat{CAI}\) (AI là pg góc BAC)

AB = AD (GT)

=> t/g ABI = t/g ADI (c.g.c)

=> BI = DI (2 cạnh t/ứ)

b/ Có t/g ABI = t/g ADI

=> \(\widehat{ABI}=\widehat{ADI}\)(2 góc t/ứ)

=> \(180^o-\widehat{ABI}=180^o-\widehat{ADI}\)

=> \(\widehat{IBK}=\widehat{IDC}\) Xét t/g BIK và t/g DIC có

\(\widehat{IBK}=\widehat{IDC}\)

IB = DI (cmt)

\(\widehat{BIK}=\widehat{DIC}\)(đối đỉnh)

=> t/g BIK = t/g DIC (g.c.g)

c/ Có t/g BIK = t/g DIC

=> BK = DC (2 cạnh t/ứ) => AB + BK = DC + AD

=> AK = AC

=> t/g AKC cân tại A 

Mà AI là pg góc BAC (K thuộc AB)

=> AI đồng thời là đường cao t/g AKC

=> AI ⊥ KC Mà BH ⊥ KC

=> AI // BH

19 tháng 12 2020

bạn tự vẽ hình nhá

Vì AI là tia phân giác ⇔ \(\widehat{BAI}=\widehat{DAI}=\dfrac{\widehat{BAC}}{2}\)

a) xét Δ ABI và ΔADI, có:

 AB=AD

\(\widehat{BAI}=\widehat{DAI}\)  (cmt)    

AI chung

⇒Δ ABI  =Δ ADI (c.g.c)

⇒BI=DI (2 cạnh t/ứng) (đpcm)

b) Do Δ ABI  =Δ ADI (cmt) ⇒ \(\widehat{ABI}=\widehat{ADI}\)

Có: \(\widehat{ABI}+\widehat{IBK}\) =180(2 góc kề bù)

      \(\widehat{ADI}+\widehat{IDC}\) =180(2 góc kề bù)

Mà \(\widehat{ABI}=\widehat{ADI}\) (cmt) ⇒ \(\widehat{IBK}=\widehat{IDC}\)

Vì \(\widehat{BIK}\) và \(\widehat{DIC}\) là 2 góc đối đỉnh ⇒ \(\widehat{BIK}\) =\(\widehat{DIC}\)

xét Δ BKI và Δ DCI có:

\(\widehat{IBK}=\widehat{IDC}\) (cmt)

BI=ID (cmt)

\(\widehat{BIK}\) =\(\widehat{DIC}\) (cmt)

⇒Δ BKI = Δ DCI (g.c.g) (đpcm)

c) Từ Δ BKI = Δ DCI (cmt) ⇒ BK=DC

Có AB=AD (gt) ; BK=DC (cmt)

⇔AB+BK=AD+DC

⇔AK=AC

⇒Δ ACK cân tại A.

Mà AI là phân giác của \(\widehat{KAC}\) (gt)

⇒AI vừa là đường phân giác vừa là đường cao của Δ ACK.

⇒AI ⊥ CK. mà BH ⊥ CK (gt)

⇒AI // BH (đpcm)

 

11 tháng 12 2020

HOI KHO ^.^

17 tháng 11 2021

Khó quá

 

30 tháng 12 2020

A B C M a) Xét tam giác BAM và tam giác CAM có : BA = CA (GT) Góc BAM=góc CAM ( vì : AM là tia phân giác của góc BAC ) AM là cạnh chung Do đó: tam giác BAM = tam giác CAM(c.g.c) b) vì tam giác BAM = tam giác CAM (câu a) => góc AMB = góc AMC ( hai góc tương ứng) Mà : hai góc đó là hai góc kề bù Nên: Góc AMB=góc CAM = 90 độ => AM vuông góc với BC. D C) Xét tam giác BAD và tam giác CAD có: AB=AC( GT) BD=CD(GT) AD là cạnh chung =>Do đó :tam giác BAD=tam giác CAD(c.c.c) => AD là tia phân giác của góc A ( vì góc BAD=góc CAD) Nên: ba điểm A,D,M thẳng hàng => AM là đường trung trực của BC => AD cũng là đường trung trực của BC

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại MA. chứng minh tam giác ABC bằng tam giác MBEB. chứng minh DM vuông góc với BCC .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IACcâu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)A. chứng minh tam giác ABD bằng tam giác ACDB. Vẽ...
Đọc tiếp

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại M

A. chứng minh tam giác ABC bằng tam giác MBE

B. chứng minh DM vuông góc với BC

C .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IAC

câu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)

A. chứng minh tam giác ABD bằng tam giác ACD

B. Vẽ đường trung tuyến của tam giác ABC cắt cạnh AC tại G. chứng minh G là trọng tâm của tam giác ABC

C. Gọi H là trung điểm của cạnh DC. qua h Vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh tam giác DEC cân

D. Chứng minh ba điểm B, G, E thẳng hàng

Câu 3 Cho tam giác ABC vuông tại A. Vẽ trung tuyến AM của tam giác ABC, Kẻ MH vuông góc với AC. Trên tia đối của tia MH đặt điểm  K sao cho MK bằng MH

a. chứng minh tam giác MHC bằng tam giác MKB và BK vuông góc với KH

B. Chứng minh AB song song với HK và BK = AH.

C. Vẽ BH cắt AB tại g. Gọi I là trung điểm của AB. Chứng minh ba điểm C, G, I thẳng hàng

câu4 Cho tam giác ABC vuông tại A. gọi M là trung điểm cạnh BC. trên tia đối của tia MA lấy điểm D sao cho MD = MA.

A . chứng minh tam giác MCD bằng tam giác MBD và AC song song với BD

B. Gọi I là trung điểm AM, J là trung điểm BM. AJ cắt BI tại G. Chứng minh tam giác GAB là tam giác cân

Câu 5 cho tam giác ABC vuông tại A (AB bé hơn AC). vẽ BD là tia phân giác của góc ABC (D thuộc AC). trên đoạn BC lấy điểm E sao cho BE bằng BA

a chứng minh tam giác ABD bằng tam giác EBD .Từ đó suy ra góc BED là góc vuông

b.  tia ED  cắt tia BA tại EF. Chứng minh tam giác BED cân

C. Chứng minh tam giác AFC bằng tam giác  ECF

D.Chứng minh: AB + AC >DE+BC

câu 6: Cho tam giác ABC vuông tại A. Vẽ đường phân phân giác BD của tam giác ABC và E là hình chiếu của D trên BC

a. chứng minh tam giác ABD bằng tam giác EBD và AE vuông góc với BD

B. Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh tam giác ABC bằng tam giác AFC 

C. Qua A vẽ đường thẳng vuông góc với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng

câu 7: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ AD là phân giác của góc A (D thuộc BC)

A . Chứng minh tam giác ABD bằng tam giác ACD

B. lấy H là trung điểm của AB. Trên tia đối của tia HC lấy điểm K sao cho HK = HC. Chứng minh rằng AK = BC

c. CH cắt AD tại G. Chứng minh (BA+BC)÷6 >GH

4
28 tháng 4 2019

bài 1 đề bài có sai ko?

29 tháng 4 2019

Đề đúng nha bạn