tìm các phân số a/b bằng phân số 42/70 biết tích của BCNN[a;b]và UCLN[a;b] bằng 1215
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1 : \(\frac{a}{b}=\frac{42}{66}=\frac{7}{11}\Rightarrow a=7k;b=11k\) với \(k\in\) N*
ƯCLN(a ; b) = 36 => ƯCLN(7k ; 11k) = 36. Mà 7 và 11 nguyên tố cùng nhau nên k = 36
Vậy a = 36 x 7 = 252 ; b = 396.
Phân số phải tìm là \(\frac{252}{396}\)
a) ta có:
80=24. 5 140=22.5.7
Thừa số nguyên tố chung là 2,5. Thừa số nguyên tố riêng là 7
Vậy BCNN(80,140)= 24.5.7= 560
b) ta có:
42=2.3.7
120=23.3.5
Thừa số nguyên tố chung là 2,3. Thừa số nguyên tố riêng 7,5
Vậy BCNN(42,120)=23.3.5.7=840
a) Giả sử 42 = a . b = b . a. Điều này có nghĩa là a và b là những ước của 42. Vì b = 42 : a nên chỉ cần tìm a. Nhưng a có thể là một ước bất kì của 42.
Nếu a = 1 thì b = 42.
Nếu a = 2 thì b = 21.
Nếu a = 3 thì b = 14.
Nếu a = 6 thì b = 7.
b) ĐS: a = 1, b = 30;
a = 2, b = 15;
a = 3, b = 10;
a = 5, b = 6.
a) Giả sử 42 = a . b = b . a. Điều này có nghĩa là a và b là những ước của 42. Vì b = 42 : a nên chỉ cần tìm a. Nhưng a có thể là một ước bất kì của 42.
Nếu a = 1 thì b = 42.
Nếu a = 2 thì b = 21.
Nếu a = 3 thì b = 14.
Nếu a = 6 thì b = 7.
b) ĐS: a = 1, b = 30;
a = 2, b = 15;
a = 3, b = 10;
a = 5, b = 6.
a) ƯC(30;45) = {1;3;5;15}
b) ƯC(42;70) = {1;2;7;} (chắc là còn đấy nhưng tui lười qué :))
vì a*b=UCLN*BCNN của a và b
=>a*b=189 (1)
\(\frac{a}{b}=\frac{15}{35}\Rightarrow35a=15b\left(2\right)\)
Từ (1) và (2) ta có hệ \(\hept{\begin{cases}35a=15b\left(1\right)\\ab=189\left(2\right)\end{cases}}\)
Giải hệ ta đc:\(\hept{\begin{cases}a=9\\b=21\end{cases}\left(TMĐK\right)}\)