Cho hàm số y= ax2 có đồ thị là (P) và điểm M (2;-2).
a) Tìm a biết đồ thị hàm số qua điểm M.
b) Vẽ đồ thị của hàm số trên.
Mình cần gấp ,các bạn giải giùm mình nha.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(P) đi qua điểm A (−2; 4) nên 4 = a. ( − 2 ) 2 = 4a a = 1
Vậy phương trình parabol (P) là y = x 2 .
Để (P) tiếp xúc với (d) thì phương trình hoành độ giao điểm
x 2 = 2 (m – 1)x – (m – 1)có nghiệm kép
↔ ∆ ’ = [ − ( m – 1 ) ] 2 − m + 1 = 0 ↔ m 2 – 2m + 1 − m + 1 = 0 ↔ m 2 – 3m + 2 = 0 ↔ m=1 hoặc m=2
Nếu m = 1 thì hoành độ giao điểm là x = 0. Vậy tiếp điểm là (0; 0)
Nếu m = 2 thì hoành độ giao điểm là x = 1. Vậy tiếp điểm là (1; 1)
Đáp án: C
a, y = ax^2 đi qua B(2;4)
<=> 4a = 4 <=> a = 1
b, bạn tự vẽ
a: Thay x=2 và y=4 vào hàm số, ta được:
\(a\cdot4=4\)
hay a=1
b: Thay x=2 và y=4 vào hàm số, ta được:
4a=4
hay a=1
1) Để (P) đi qua điểm A(1;-2) thì
Thay x=1 và y=-2 vào hàm số \(y=ax^2\), ta được:
\(a\cdot1^2=-2\)
hay a=-2
Lời giải:
Đỉnh của đths là $(\frac{-b}{2a}, 4-\frac{b^2}{4a})=(1,-2)$
$\Rightarrow \frac{-b}{2a}=1; 4-\frac{b^2}{4a}=-2$
$\Rightarrow -b=2a; b^2=24a$
$\Rightarrow a=0$ hoặc $a=6$
Nếu $a=0$ thì $b=-2a=0$. Khi đó đths $y=4$ là đường thẳng song song với trục hoành, không có đỉnh I(1,-2)$
Nếu $a=6$ thì $b=-2a=-12$. Khi đó: $a+3b=6+3(-12)=-30$