K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2022

a, Xét tam giác ABH và tam giác ACK ta có 

^AHB = ^AKC = 900

^BAH = ^CAK ( AD là pg ) 

Vậy tam giác ABH ~ tam giác ACK ( g.g ) 

 Xét tam giác BDH và tam giác CDK ta có 

^BDH = ^CDK ( đối đỉnh ) 

^BHD = ^CKD = 900

Vậy tam giác BDH ~ tam giác CDK (g.g) 

b, Ta có \(\frac{AH}{AK}=\frac{BH}{CK}\)( tỉ số đồng dạng ) 

\(\frac{DH}{DK}=\frac{BH}{CK}\)( tỉ số đồng dạng ) 

\(\Rightarrow\frac{AH}{AK}=\frac{DH}{DK}\Rightarrow AH.DK=DH.AK\)

c, câu cuối dễ rồi, bạn tự làm nhé 

19 tháng 4 2021

Bài này thì nó cx dễ thôi nha 

B1 Vẽ Hình ra nha

30 tháng 4 2019

a, xét tam giác BHD và tam giác CKD có : 

góc BHD = góc CKD = 90 do ...

góc HDB = góc CDK (đối đỉnh)

=> tam giác BHD ~ tam giác CKD (g - g)

b, xét tam giác ABH và tam giác ACK có : 

góc AHB = góc AKC = 90 do ...

góc BAH = góc CAH do AD là phân giác của góc BAC (gt)

=> tam giác ABH ~ tam giác ẠCK (g.g)

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

b: Xét ΔABH vuông tại H và ΔCAH vuông tại H có

góc ABH=góc CAH

=>ΔABH đồng dạng với ΔCAH

c: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

AH=6*8/10=4,8cm

24 tháng 3 2016

d,   tim AH=16,8cm do tam giác ABH dồng dạng với tam giác CBA các cạnh tuong ứng tỉ lệ

tinh CD tính chất dg pg \(\frac{CD}{DB}=\frac{AC}{AB}\)

tính chat day ti so bang nhau

\(\frac{CD}{DB+CD}=\frac{AC}{AB+AC}\)

thế số vao rồi tính suy ra CD=20, BD=15

pytago trong tam giác HAC tińh CH=22,4

suy ra DH=2,4

Diện tích tam giác AHD=1/2 *AH*DH=20,16

          Ban có thể tính laị so lieu

a) Xét ΔHCA vuông tại H và ΔACB vuông tại A có 

\(\widehat{HCA}\) chung

Do đó: ΔHCA\(\sim\)ΔACB(g-g)

a: Xét ΔAHB vuông tại H và ΔCHA vuông tạiH có

góc HAB=góc HCA

=>ΔAHB đồng dạng với ΔCHA

c: BK là phân giác

=>AK/CK=BA/BC

ΔAHC có AD là phân giác

nên DH/CD=AH/AC=BA/BC

=>DH/CD=AK/CK

=>KD//AH

loading...  loading...  loading...  

a) Xét ΔAHB vuông tại H và ΔCAB vuông tại A có 

\(\widehat{CBA}\) chung

Do đó: ΔAHB\(\sim\)ΔCAB(g-g)