Giup bài này vs ạ : cho a,b,c la cac so thoa man a^2+b^2+c^2=<8 tìm GTNN cua xy+yz+2xz
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
TD
3
30 tháng 5 2016
http://olm.vn/hoi-dap/question/595391.html
Bài giải đây bạn nhé! Mà bạn xem lại đề bài , sao lại từ a,b,c lại chuyển qua x,y,z vậy?
VT
0
TT
0
DV
0
NB
0
2 tháng 12 2014
(a2+b2+c2)2>2(a4+b4+c4)
<=> a4 + b4 + c4+ 2a2b2 + 2a2c2 + 2b2c2 > 2(a4 + b4 + c4)
<=> a4 + b4 + c4 - 2a2b2 - 2a2c2 - 2b2c2 < 0
<=> (a2 - b2 - c2)2 - 4b2c2 <0
<=> (a2 - b2 - c2)2 <4b2c2
<=> a2 - b2 - c2<4b2c2
<=> a2 < (b+c)2
<=> a < b+c ( a,b,c >0)
CMTT với b và c ta có
b < a + c
c< b + a
>>> ĐPCM
30 tháng 11 2014
bạn oi tra loi gium cau hoi tren minh voi câu hình thang kìa đi ma năn nỉ đó mà
Đề bài đúng : Cho a,b,c là các số thoả mãn : \(a^2+b^2+c^2\le8\) Tìm giá trị nhỏ nhất của
Ta có : \(0\le\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ac\right)\)\(\Rightarrow ab+bc+ac\ge\frac{-\left(a^2+b^2+c^2\right)}{2}\ge-4\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a^2+b^2+c^2=8\\a+b+c=0\end{cases}}\)
Mặt khác : \(\frac{a^2+b^2}{2}\ge-ac\Rightarrow ac\ge\frac{-\left(a^2+b^2\right)}{2}\ge\frac{-\left(a^2+b^2+c^2\right)}{2}\ge-4\)
\(\Rightarrow ab+bc+2ac\ge-4-4=-8\)
Min \(ab+bc+2ac=-8\Leftrightarrow a=2,b=0,c=-2\)