Cho c2==ab . Chứng minh rằng :
a) \(\dfrac{a^{2^{ }}+c^2}{b^{2^{ }}+c^{2^{ }}}=\dfrac{a}{b}\)
b)\(\dfrac{b^{2^{ }}-a^{2^{ }}}{a^{2^{ }}+c^2}=\dfrac{b-a}{a}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đề là chứng minh \(\dfrac{a^2+c^2}{b^2+c^2}=\dfrac{a}{b}\) à bạn?
Ta có: \(\dfrac{a}{c}=\dfrac{c}{b}\)
\(\Rightarrow ab=c^2\)
\(\Rightarrow\dfrac{a^2+c^2}{b^2+c^2}=\dfrac{a^2+ab}{b^2+ab}=\dfrac{a\left(a+b\right)}{b\left(a+b\right)}=\dfrac{a}{b}\)
\(\Rightarrowđpcm\)
b)
Ta có: \(\dfrac{a}{c}=\dfrac{c}{d}\)
\(\Rightarrow c^2=ab\)
\(\Rightarrow\dfrac{b^2-a^2}{a^2+c^2}=\dfrac{b^2-a^2}{a^2+ab}=\dfrac{\left(b-a\right)\left(b+a\right)}{a\left(a+b\right)}=\dfrac{b-a}{a}\)
\(\Rightarrowđpcm.\)
a,Từ \(\dfrac{a}{c}=\dfrac{c}{b}\)⇒\(c^2=a.b\)
Khi đó \(\dfrac{a^2+c^2}{b^2+c^2}=\dfrac{a^2+a.b}{b^2+a.b}\\ =\dfrac{a\left(a+b\right)}{b\left(a+b\right)}\)
b,Ta có:
\(\dfrac{a^2+c^2}{b^2+c^2}=\dfrac{a}{b}\Rightarrow\dfrac{b^2+c^2}{a^2+c^2}=\dfrac{a}{b}\\ \dfrac{a^2+c^2}{b^2+c^2}=\dfrac{b}{a}\Rightarrow\dfrac{b^2+c^2}{a^2+c^2}-1=\dfrac{b}{a}-1\\ hay\dfrac{b^2+c^2-a^2-c^2}{a^2+c^2}=\dfrac{b-a}{a}\)
Vậy \(\dfrac{b^2-a^2}{a^2+c^2}=\dfrac{b-a}{a}\)
Cho \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\) với ( với a, b, c, d khác 0, và c \(\ne\pm d\) ). Chứng minh rằng hoặc \(\dfrac{a}{b}=\dfrac{c}{d}\) hoặc \(\dfrac{a}{b}=\dfrac{d}{c}\) ?
\(\dfrac{a^2+bc}{b+c}=\dfrac{\left(a+b\right)\left(a+c\right)-a\left(b+c\right)}{b+c}=\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}-a\)
\(\Rightarrow VT=\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}+\dfrac{\left(a+b\right)\left(b+c\right)}{a+c}+\dfrac{\left(a+c\right)\left(b+c\right)}{a+b}-\left(a+b+c\right)\)
Mặt khác áp dụng \(x+y+z\ge\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)
\(\Rightarrow\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}+\dfrac{\left(a+b\right)\left(b+c\right)}{a+c}+\dfrac{\left(a+c\right)\left(b+c\right)}{a+b}\ge a+b+b+c+a+c=2\left(a+b+c\right)\)
\(\Rightarrow VT\ge2\left(a+b+c\right)-\left(a+b+c\right)=a+b+c\) (đpcm)
a/ \(\dfrac{a^2+c^2}{b^2+c^2}=\dfrac{a}{b}\)
\(Tacó\dfrac{a^2+ab}{b^2+ab}=\dfrac{a\left(a+b\right)}{b\left(b+a\right)}=\dfrac{a}{b}\) (vì \(c^2=ab\) )
Vậy....