Cho tam giác ABC có góc A-B = 22o và góc B-C =22o
Tính số đo độ của các góc trong tam giác ABC
Làm ơn giúp mình với :(((
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{\widehat{A}}{3}=\dfrac{\widehat{B}}{5}=\dfrac{\widehat{C}}{7}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{3+5+7}=\dfrac{180^0}{15}=12^0\\ \Rightarrow\left\{{}\begin{matrix}\widehat{A}=36^0\\\widehat{B}=60^0\\\widehat{C}=84^0\end{matrix}\right.\)
tớ làm hơi qua loa một chút phần nào có kí hiệu t là tớ hơi tắt chút xíu nhé ( ko mún viết nhìu )
hình cậu tự vẽ nhá !
a)xét tam giác ABD và tam giác ACE ta có : góc a chung ; góc BDA=góc CEA =90 độ suy ra tam giác ABD đồng dạng với tam giác ACE theo trường hợp góc-góc
b) theo a) ta có tam giác ABD đồng dạng với tam giác ACE\(\Rightarrow\)\(\frac{AD}{AE}=\frac{AB}{AC}\)(t)
xét tam giác AED và tam giác ACB ta có góc a chung ; (t) ta suy ra tam giác AED đồng dạng với tam giác acb theo trường hợp cạnh-góc-cạnh suy ra gócAED=gócACB=40độ
nhớ k cho mk nha!
Do BE là p/g ˆ\(A B C\)
\(⇒ ˆ B 1 = ˆ B 2 = 1 2 ˆ A B C\)
Xét \(Δ A B E có ˆ B E \)là góc ngoài đỉnh E
\(⇒ ˆ B E C = ˆ A + ˆ B 1 = 90 ^0 + ˆ B 1 = 110 ^0\)
\(⇒ ˆ B 1 = 110 ^0 − 90 ^0 = 20 ^0\)
\(⇒ ˆ A B C = 20 ^0 .2 = 40 ^0\)
Xét \(Δ A B C\)vuông tại A
\(⇒ ˆ A B C + ˆ C = 90 ^0\)
\(⇒ 40 ^0 + ˆ C = 90 ^0\)
\(⇒ ˆ C = 90 ^0 − 40 ^0\)
\(⇒ ˆ C = 50 ^0\)
Vậy \(C = 50 ^0\)
Gợi ý thôi nhé.
a) Có \(AB=\sqrt{\left(x_B-x_A\right)^2+\left(y_B-y_A\right)^2}=\sqrt{\left(\left(-1\right)-6\right)^2+\left(2-\left(-1\right)\right)^2}=\sqrt{58}\)
Tương tự như vậy, ta tính được AC, BC.
Tính góc: Dùng \(\cos A=\dfrac{AB^2+AC^2-BC^2}{2AB.AC}\)
b) Chu vi thì bạn lấy 3 cạnh cộng lại.
Diện tích: Dùng \(S_{ABC}=\dfrac{1}{2}AB.AC.\sin A\)
c) Gọi \(H\left(x_H,y_H\right)\) là trực tâm thì \(\left\{{}\begin{matrix}AH\perp BC\\BH\perp AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\overrightarrow{AH}.\overrightarrow{BC}=0\\\overrightarrow{BH}.\overrightarrow{AC}=0\end{matrix}\right.\)
Sau đó dùng: \(\overrightarrow{u}\left(x_1,y_1\right);\overrightarrow{v}\left(x_2,y_2\right)\) thì \(\overrightarrow{u}.\overrightarrow{v}=x_1x_2+y_1y_2\) để lập hệ phương trình tìm \(x_H,y_H\)
Trọng tâm: Gọi \(G\left(x_G,y_G\right)\) là trọng tâm và M là trung điểm BC. Dùng \(\left\{{}\begin{matrix}x_M=\dfrac{x_B+x_C}{2}\\y_M=\dfrac{y_B+y_C}{2}\end{matrix}\right.\) để tìm tọa độ M.
Dùng \(\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{AM}\) để lập hpt tìm tọa độ G.
Ta có A,B,C tỉ lệ với 1,2,3
==>A/1=B/2=C/3
==> A+B+C/1+2+3=180ĐỘ/6=30 ĐỘ
Cô sẽ kí hiệu số đo góc A là a, số đo góc B là b, số đo góc C là c nhé :). Từ giả thiết ta có:
\(\hept{\begin{cases}a-b=22\\b-c=22\end{cases}}\) Từ đó suy ra \(\hept{\begin{cases}a=b+22\\c=b-22\end{cases}}\)
Lại có tổng ba góc trong tam giác là \(180^o\) nên \(a+b+c=180\)
Như vậy \(b+22+b+b-22=180\Rightarrow2b=180\Rightarrow b=60\)
Vậy ta có góc A = \(82^o\); góc B = \(60^o\); góc C = \(38^o\)
Chúc em học tốt :)