K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2016

Cô sẽ kí hiệu số đo góc A là a, số đo góc B là b, số đo góc C là c nhé :).  Từ giả thiết ta có: 

\(\hept{\begin{cases}a-b=22\\b-c=22\end{cases}}\) Từ đó suy ra \(\hept{\begin{cases}a=b+22\\c=b-22\end{cases}}\)

Lại có tổng ba góc trong tam giác là \(180^o\) nên \(a+b+c=180\)

Như vậy \(b+22+b+b-22=180\Rightarrow2b=180\Rightarrow b=60\)

Vậy ta có góc A = \(82^o\); góc B = \(60^o\); góc C = \(38^o\)

Chúc em học tốt :)

9 tháng 8 2016

TRỜI ! MỘT BÀI TOÁN BÙ ĐẦU BÙ ÓC

11 tháng 8 2016

bài này lóp 7 hoc rù nhung quyen lop 7 nhình học giỏi lám đó

24 tháng 11 2021

\(\dfrac{\widehat{A}}{3}=\dfrac{\widehat{B}}{5}=\dfrac{\widehat{C}}{7}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{3+5+7}=\dfrac{180^0}{15}=12^0\\ \Rightarrow\left\{{}\begin{matrix}\widehat{A}=36^0\\\widehat{B}=60^0\\\widehat{C}=84^0\end{matrix}\right.\)

14 tháng 4 2017

​​tớ làm hơi qua loa một chút phần nào có kí hiệu t là tớ hơi tắt chút xíu nhé ( ko mún viết nhìu )

hình cậu tự vẽ nhá !

a)xét tam giác ABD và tam giác ACE ta có : góc a chung ; góc BDA=góc CEA =90 độ suy ra tam giác ABD đồng dạng với tam giác ACE theo trường hợp góc-góc

b) theo a) ta có tam giác ABD đồng dạng với tam giác ACE\(\Rightarrow\)\(\frac{AD}{AE}=\frac{AB}{AC}\)(t)

xét tam giác AED và tam giác ACB ta có góc a chung ; (t) ta suy ra tam giác AED đồng dạng với tam giác acb theo trường hợp cạnh-góc-cạnh suy ra gócAED=gócACB=40độ

 nhớ k cho mk nha!

14 tháng 4 2017

a, Xét \(\Delta\)ABD và \(\Delta\)ACE có:

           \(\widehat{A}\)  chung

     \(GócADB=GócAEC\) 

Vậy \(\Delta ABD\omega\Delta ACE\)

27 tháng 2 2022

Do BE là p/g ˆ\(A B C\)

\(⇒ ˆ B 1 = ˆ B 2 = 1 2 ˆ A B C\)

Xét \(Δ A B E có ˆ B E \)là góc ngoài đỉnh E 

\(⇒ ˆ B E C = ˆ A + ˆ B 1 = 90 ^0 + ˆ B 1 = 110 ^0\)

\(⇒ ˆ B 1 = 110 ^0 − 90 ^0 = 20 ^0\)

\(⇒ ˆ A B C = 20 ^0 .2 = 40 ^0\)

Xét \(Δ A B C\)vuông tại A 

\(⇒ ˆ A B C + ˆ C = 90 ^0\)

\(⇒ 40 ^0 + ˆ C = 90 ^0\)

\(⇒ ˆ C = 90 ^0 − 40 ^0\)

\(⇒ ˆ C = 50 ^0\)

Vậy \(C = 50 ^0\)

17 tháng 12 2023

 Gợi ý thôi nhé.

a) Có \(AB=\sqrt{\left(x_B-x_A\right)^2+\left(y_B-y_A\right)^2}=\sqrt{\left(\left(-1\right)-6\right)^2+\left(2-\left(-1\right)\right)^2}=\sqrt{58}\)

Tương tự như vậy, ta tính được AC, BC. 

 Tính góc: Dùng \(\cos A=\dfrac{AB^2+AC^2-BC^2}{2AB.AC}\)

b) Chu vi thì bạn lấy 3 cạnh cộng lại.

 Diện tích: Dùng \(S_{ABC}=\dfrac{1}{2}AB.AC.\sin A\)

c) Gọi \(H\left(x_H,y_H\right)\) là trực tâm thì \(\left\{{}\begin{matrix}AH\perp BC\\BH\perp AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\overrightarrow{AH}.\overrightarrow{BC}=0\\\overrightarrow{BH}.\overrightarrow{AC}=0\end{matrix}\right.\)

 Sau đó dùng: \(\overrightarrow{u}\left(x_1,y_1\right);\overrightarrow{v}\left(x_2,y_2\right)\) thì \(\overrightarrow{u}.\overrightarrow{v}=x_1x_2+y_1y_2\) để lập hệ phương trình tìm \(x_H,y_H\)

Trọng tâm: Gọi \(G\left(x_G,y_G\right)\) là trọng tâm và M là trung điểm BC. Dùng \(\left\{{}\begin{matrix}x_M=\dfrac{x_B+x_C}{2}\\y_M=\dfrac{y_B+y_C}{2}\end{matrix}\right.\) để tìm tọa độ M. 

 Dùng \(\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{AM}\) để lập hpt tìm tọa độ G.

17 tháng 12 2023

Bài gì vậy ạ?

11 tháng 7 2016

Ta có A,B,C tỉ lệ với 1,2,3

==>A/1=B/2=C/3

==> A+B+C/1+2+3=180ĐỘ/6=30 ĐỘ