chứng minh rằng nếu a phần b < c phần d ( b< 0 , d>0 ) thi : a phần b < a+c phần b+d < c phần d
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có a/b<c/d
=> ad<bc
=>ad+ab<bc+ab
=> a(b+d)<b(c+a)
=>a/b<a+c/b+d
Lại có ad<bc
=> ad+cd<bc+cd
=>d(a+c)<c(b+d)
=>a+c/b+d<c/d
bạn ơi tại sao lại là thế mik tưởng là a nhân b cộng a nhân d chứ
search mạn bn à. Mà bài này dễ CM mà công thức trong sách giáo khoa lớp 7 hả.......
\(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\\ \Leftrightarrow\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\Rightarrow\frac{q^2}{4}=\frac{b^2}{9}=\frac{2c^2}{32}=\frac{a^2-b^2+2c^2}{4-9+32}=\frac{108}{27}=4\)
=> \(\frac{a^2}{4}=4\Rightarrow a^2=4.4=16\Rightarrow a=+-4\)
=>\(\frac{b^2}{9}=4\Rightarrow b^2=4.9=36\Rightarrow b=+-6\)
=>\(\frac{2c^2}{32}=4\Rightarrow c^2=4.32:2=64\Rightarrow c=+-8\)
Câu 2 :
Ta có : \(\frac{a}{b}=\frac{c}{d}\) \(\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
\(\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Áp dụng t.c dtsbn:
\(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\\ \Leftrightarrow\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)
Cho \(\frac{a}{b}=\frac{c}{d}\) chứng minh rằng \(\frac{a}{a-b}=\frac{c}{c-d}\)
Có \(\frac{a}{a-b}=\frac{c}{c-d}\Leftrightarrow\frac{a-b}{a}=\frac{c-d}{c}\Leftrightarrow\frac{a}{a}-\frac{b}{a}=\frac{c}{c}-\frac{d}{c}\Leftrightarrow1-\frac{b}{a}=1-\frac{d}{c}\)
\(\Rightarrow\frac{b}{a}=\frac{d}{c}hay\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\)
Đề bài cho \(\frac{a}{b}=\frac{c}{d}\) \(\Rightarrow b=c.\) Không thể \(ad=bc\Rightarrow\) Đề sai
Ta có: \(\frac{a}{b}=\frac{c}{d}=k\left(k\ne0\right)\)
\(\Rightarrow a=kb,c=kd\)
Xét: \(\frac{a}{a-b}=\frac{bk}{bk-b}=\frac{bk}{b\left(k-1\right)}=\frac{k}{k-1}\left(1\right)\)
\(\frac{c}{c-d}=\frac{kd}{kd-d}=\frac{kd}{d\left(k-1\right)}=\frac{k}{k-1}\left(2\right)\)
Từ (1) và (2) => \(\frac{a}{a-b}=\frac{c}{c-d}\)