Cho tam giác ABC góc BAC=BCA=80 độ ở miền trong tam giác vẽ hai tia Ax và Cy cắt Bac và BA lần lượt ở D và E biết góc CAD=60 ECA=50 TÍNH GÓC ADE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A.
Gọi số cần tìm là \(\overline{abc}\) theo đề bài
\(\overline{abc}=100a+10b+c=98a+7b+2a+3b+c=\)
\(=\left(98a+7b\right)+2\left(a+b+c\right)+\left(b-c\right)⋮7\)
\(\Rightarrow\left(98a+7b\right)+2.14+b-c⋮7\)
Ta có \(\left(98a+7b\right)+2.14⋮7\Rightarrow b-c⋮7\) Ta có các trường hợp sau
+Nếu b=c => a=14-(b+c) mà a<=9 => 14-(b+c)<=9 => b+c>=5, mặt khác a>0 => 14-(b+c)>0=> b+c<14 từ đây ta có các trường hợp
b=c=3 => a=8
b=c=4 => a=6
b=c=5 => a=4
b=c=6 => a=2
+ Nếu b khác c
Nếu b=9 => c=2 => a=14-9-2=3
Nếu b=8 => c=1 => a=14-8-1=5
Nếu b=7 => c=0 => a=14-7=7
Nếu c=9 => b=2 => a=14-9-2=3
Nếu c=8 => b=1 => a=14-8-1=5
Nếu c=7 => b=0 => a=14-7=7
\(\Rightarrow\overline{abc}=\left\{833;644,455,266,329,392,518,581,707,770\right\}\)
Trên BC em lấy F sao cho ^CAF = 20o
=> ^ACF = ^AFC = 80o => ∆ACF cân tại A => AC = AF (1)
Hơn nữa dễ thấy ^ACE = ^AEC = 50o => ∆ACE cũng cân tại A => AC = AE (2)
Từ (1) và (2) => AE = AF mà ^EAF = ^EAC - ^FAC = 80o - 20o = 60o => ∆AEF đều => AF = EF (3)
Mặt khác dễ thấy ^ADF = ^DAF = 40o => ∆AFD cân tại F => AF = DF (4)
Từ (3) và (4) => DF = EF => ∆DEF cân tại F mà ^DFE = ^AEF - ^EBF = 60o - 20o = 40o => ^DEF = ^EDF = 70o
=> ^ADE = ^EDF - ^ADF = 70o - 40o = 30o
Trên BC lấy F sao cho ^CAF = 20o
=> ^ACF = ^AFC = 80o => ∆ACF cân tại A => AC = AF (1)
Hơn nữa dễ thấy ^ACE = ^AEC = 50o => ∆ACE cũng cân tại A => AC = AE (2)
Từ (1) và (2) => AE = AF mà ^EAF = ^EAC - ^FAC = 80o - 20o = 60o => ∆AEF đều => AF = EF (3)
Mặt khác dễ thấy ^ADF = ^DAF = 40o => ∆AFD cân tại F => AF = DF (4)
Từ (3) và (4) => DF = EF => ∆DEF cân tại F mà ^DFE = ^AEF - ^EBF = 60o - 20o = 40o => ^DEF = ^EDF = 70o
=> ^ADE = ^EDF - ^ADF = 70o - 40o = 30o