Thu gọn :
a) \(2^{n-1}+2.2^{n+3}-8.2^{n-4}-16.2^n\)
b) \(\left(3^{n+1}-2.2^n\right)\left(3^{n+1}+2.2^n\right)-3^{2n+2}+\left(8.2^{n-2}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=2^{n-1}+2.2^{n+3}-8.2^{n-4}-16.2^n\)
\(=2^{n-1}+2^{n+3+1}-2^{n-4+3}-2^{n+4}\)
\(=2^{n-1}+2^{n+4}-2^{n-1}-2^{n+4}\)
\(=0\)
b) \(B=\left(3^{n+1}-2.2^n\right)\left(3^{n+1}+2.2^n\right)-3^{2n+2}+\left(8.2^{n-2}\right)^2\)
\(=\left(3^{n+1}-2^{n+1}\right)\left(3^{n+1}-2^{n+1}\right)-3^{2n+2}+2^{2n+2}\)
\(=3^{2n+2}-2^{2n+2}-3^{2n+2}+2^{2n+2}\)
\(=0\)
a,
\(A=2^{n-1}+2.2^{n+3}-8.2^{n-4}-16.2^n\)
\(=2^{n-1}+2^{n+3+1}-2^{n-4+3}-2^{n+4}\)
\(=2.2^{n-1}+2.2^{n+4}=2^n+2^{n+5}\)
b,
\(B=\left(3^{n+1}-2.2^n\right)\left(3^{n+1}+2.2^n\right)-3^{2n+2}+\left(8.2^{n-2}\right)^2\)
\(=\left(3^{n+1}\right)^2-\left(2.2^n\right)^2-\left(3^{n+1}\right)^2+\left(2^{n-2+3}\right)^2\)
\(=-2^{n+1}+2^{n+1}=0\)
\(\left(3^{n+1}-2.2^n\right)\left(3.3^n+2^{n+1}\right).3^{2n+2}+\left(8.2^{n-2}.3^{n+1}\right)^2\)
\(=\left(3^{n+1}-2^{n+1}\right)\left(3^{n+1}+2^{n+1}\right).3^{2n+2}+\left(2^{n+1}.3^{n+1}\right)^2\)
\(=\left(3^{2n+2}-2^{2n+2}\right).3^{2n+2}+2^{2n+2}.3^{2n+2}\)
\(=3^{2\left(2n+2\right)}-2^{2n+2}.3^{2n+2}+2^{2n+2}.3^{2n+2}\)
\(=3^{2\left(2n+2\right)}=\left(3^{2n+2}\right)^2\).
Ta thấy \(\left(3^{2n+2}\right)^2\)luôn là 1 số chính phương với mọi n\(\in\)N
Nên ta có ĐPCM.
Lời giải:
Đặt biểu thức đã cho là $A$
Ta viết lại biểu thức thành:
\(A=(3^{n+1}-2^{n+1})(3^{n+1}+2^{n+1}).3^{2(n+1)}+(2^{n+1}.3^{n+1})^2\)
Đặt \(3^{n+1}=a; 2^{n+1}=b\Rightarrow A=(a-b)(a+b)a^{2}+(ba)^2\)
\(=(a^2-b^2)a^2+a^2b^2=a^4=(a^2)^2\)
Do đó biểu thức đã cho là một số chính phương.
Ta có đpcm.
\(A=2^{n-1}+2^{n+4}-2^3\cdot2^{n-4}-2^4\cdot2^n\)
\(A=2^{n-1}+2^{n+4}-2^{n-1}-2^{n+4}\)
\(A=0\)
Sai thì thôi nha
Từ M ta có:
\(M=2^n-2.2^n+8+2.2^n-16-16.2^n\)
\(M=2^n.\left(-2+2+2-16\right)+8-16\)
M=\(2^n.\left(-14\right)-8\)
Vậy thu gọn M ta được....