Tam giác ABC có AB=AC=5cm, BC=6cm. Gọi I là trung điểm của BC. Kẻ IM vuông góc với AB(M thuộc AB) và IN vuông góc với AC( N thuộc AC). a) Chứng minh AI vuông góc với BC. Tính độ dài AI b) Nếu góc BAC=1200 thì tam gác IMN là tam giác gì??? CÁC BẠN GIÚP MÌNH VỚI Ạ!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAIB và ΔAIC có
AI chung
IB=IC
AB=AC
Do đó: ΔAIB=ΔAIC
b: Ta có: ΔABC cân tại A
mà AI là đường trung tuyến
nên AI là đường cao
Ta có: I là trung điểm của BC
nên IB=IC=3cm
=>AI=4cm
5:
a: Xét ΔANB và ΔAMC có
AN=AM
góc BAN chung
AB=AC
=>ΔANB=ΔAMC
b: Xét ΔABC có AN/AC=AM/AB
nên MN//BC
c: góc ABN+góc IBC=góc ABC
góc ACM+góc ICB=góc ACB
mà góc ABN=góc ACM và góc ABC=góc ACB
nên góc IBC=góc ICB
=>IB=IC
mà AB=AC
nên AI là trung trực của BC
=>A,I,D thẳng hàng
a: Ta có: ΔABC cân tại A
mà AI là đường trung tuyến
nên AI là đường cao
b: Ta có: I là trung điểm của BC
nên IB=IC=4cm
Xét ΔAIB vuông tại I có
\(AB^2=AI^2+BI^2\)
hay \(AB=2\sqrt{13}\left(cm\right)\)
c: Xét ΔAMI vuông tại M và ΔANI vuông tại N có
AI chung
\(\widehat{MAI}=\widehat{NAI}\)
Do đó; ΔAMI=ΔANI
Suy ra; IM=IN
d: Xét ΔABC có
AM/AB=AN/AC
Do đó: MN//BC
a: Xét ΔAIB và ΔAIC có
AI chung
IB=IC
AB=AC
=>ΔAIB=ΔAIC
b: ΔAIB=ΔAIC
=>góc AIB=góc AIC=180/2=90 độ
=>AI vuông góc BC
IB=IC=BC/2=3cm
AI=căn 5^2-3^2=4cm
c: góc MIN=360-90-90-120=60 độ
Xét ΔAMI vuông tại M và ΔANI vuông tại N có
AI chung
góc MAI=góc NAI
=>ΔAMI=ΔANI
=>IM=IN
=>ΔIMN cân tại I
mà góc MIN=60 độ
nên ΔIMN đều
a: Ta có: ΔABC cân tại A
mà AI là đường trung tuyến
nên AI là đường cao
Vì I là trung điểm của BC nên IB=IC=BC/2=3cm
=>AI=4cm
b: Xét tứ giác AMIN có \(\widehat{AMI}+\widehat{ANI}+\widehat{MAN}+\widehat{MIN}=360^0\)
nên \(\widehat{MIN}=60^0\)(2)
Xét ΔAMI vuông tại M và ΔANI vuông tại N có
AI chug
\(\widehat{MAI}=\widehat{NAI}\)
Do đó: ΔAMI=ΔANI
Suy ra: IM=IN
=>ΔIMN cân tại I(1)
Từ (1) và (2) suy raΔIMN đều
a: Ta có: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
hay HB=HC
Ta có: ΔABC cân tại A
mà AH là đường cao
nên AH là đường phân giác
hay \(\widehat{BAH}=\widehat{CAH}\)
b: BH=CH=BC/2=4(cm)
nên AH=3(cm)
c: Xét ΔAEH vuông tại E và ΔADH vuông tại D có
AH chung
\(\widehat{EAH}=\widehat{DAH}\)
DO đó: ΔAEH=ΔADH
Suy ra: HE=HD
hay ΔHDE cân tại H
a: Ta có: ΔABC vuông tại A
=>\(BC^2=AB^2+AC^2\)
=>\(BC^2=6^2+8^2=100\)
=>\(BC=\sqrt{100}=10\left(cm\right)\)
Ta có: ΔABC vuông tại A
mà AI là đường trung tuyến
nên \(AI=\dfrac{BC}{2}=5\left(cm\right)\)
b: Xét tứ giác AMIN có
\(\widehat{AMI}=\widehat{ANI}=\widehat{MAN}=90^0\)
=>AMIN là hình chữ nhật
c: Xét ΔABC có
I là trung điểm của CB
IN//AB
Do đó: N là trung điểm của AC
Xét tứ giác AICD có
N là trung điểm chung của AC và ID
=>AICD là hình bình hành
Hình bình hành AICD có AC\(\perp\)ID
nên AICD là hình thoi
a) Xét Δ AIB và Δ AIC có :
AI chung } =>Δ AIB = Δ AIC
AB = AC (gt) } (c.c.c)
IB = IC (I là trung điểm BC) }
=> ∠AIB = ∠AIC 92 góc tương ứng) } => ∠AIB = ∠AIC = 90°
Mà : ∠AIB + ∠AIC = 180° } => AI ⊥ BC
Vì I là trung điểm BC nên :
=> IB = IC = BC2BC2 = 6262 = 3 cm
ΔAIB vuông tại I , theo định lí Py-ta-go:
=> AI² = AB² - IB² = 5² - 3² = 25 - 9 = 16 => AI = 4 cm
b) Xét Δ vuông INA và Δ vuông IMA có :
AI chung } => Δ vuông INA = Δ vuông IMA
∠MAI = ∠NAI (2 góc tương ứng) } (c.h-g.n)
=> IM = IN (2canhj tương ứng)
Nếu ∠MAN = 120° , mà IM = IN => Δ IMN là Δ cân
đó
Ai vẽ hình giúp tớ với TOT