K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2017

Theo đề bài ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)\(\dfrac{\widehat{A}}{3}=\dfrac{\widehat{B}}{5}=\dfrac{\widehat{C}}{7}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\dfrac{\widehat{A}}{3}=\dfrac{\widehat{B}}{5}=\dfrac{\widehat{C}}{7}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{3+5+7}=\dfrac{180^o}{15}=12^o\)

\(\Rightarrow\widehat{A}=12^o.3=36^o\)

\(\widehat{B}=12^o.5=60^o\)

\(\widehat{C}=12^o.7=84^o\)

16 tháng 7 2017

nếu số đo (độ) các góc của tam giác ABC là A , B , C (độ) thì theo điều kiện bài ra và tính chất của dãy tỉ số bằng nhau , ta có \(\dfrac{A}{3}=\dfrac{B}{5}=\dfrac{C}{7}=\dfrac{A+B+C}{3+5+7}=\dfrac{180}{15}=12\)

vậy : A = 3 . 12 = 36

B = 5 . 12 = 60

C = 7 . 12 = 84

=> A = 36 (độ) ; B = 60 (độ) ; C = 84 (độ)

2 tháng 6 2018

Gọi a, b, c (độ) lần lượt là số đo 3 góc A, B, C. (0 < a; b; c < 180º).

Theo định lí tổng ba góc của tam giác ta có:

    a + b + c = 180.

Vì số đo 3 góc tỉ lệ với 3; 5; 7 nên ta có:

Bài 15 trang 67 sách bài tập Toán 7 Tập 1 | Giải SBT Toán 7

Vậy số đo ba góc của tam giác ABC là: 36o; 60o; 84o

b: Độ dài cạnh huyền là \(\sqrt{6^2+7^2}=\sqrt{85}\left(cm\right)\)

c: Số đo góc ở đỉnh là:

\(180-2\cdot20^0=140^0\)

d: Số đó góc ở đáy là:

\(\dfrac{180^0-60^0}{2}=60^0\)

24 tháng 11 2021

\(\dfrac{\widehat{A}}{3}=\dfrac{\widehat{B}}{5}=\dfrac{\widehat{C}}{7}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{3+5+7}=\dfrac{180^0}{15}=12^0\\ \Rightarrow\left\{{}\begin{matrix}\widehat{A}=36^0\\\widehat{B}=60^0\\\widehat{C}=84^0\end{matrix}\right.\)

10 tháng 5 2021

mọi người trả lời nhanh giúp em vs em đang cần gấp

ủa đây là bài toán khó màbucminh

11 tháng 7 2016

Ta có A,B,C tỉ lệ với 1,2,3

==>A/1=B/2=C/3

==> A+B+C/1+2+3=180ĐỘ/6=30 ĐỘ

A:B=5:6

=>D:E=5:6

Góc ngoài tại đỉnh C có số đo là 88 độ nên A+B=88 độ

hay D+E=88 độ

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{d}{5}=\dfrac{e}{6}=\dfrac{d+e}{5+6}=\dfrac{88}{11}=8\)

Do đó: \(\widehat{E}=48^0\)