K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Góc DKE = 60 o

8 tháng 6 2016

A B C D E F I

a, 

ta có 

A + B+ C = \(180^0\)

B + C  = \(180^0\)-  A

mà BI là phân giác góc B

IBC = \(\frac{1}{2}\)B

CI là phân giác góc C 

ICB = \(\frac{1}{2}\)C

suy ra 

IBC + ICB = \(\frac{1}{2}\)B + \(\frac{1}{2}\)C = \(\frac{1}{2}\)( B + C ) = \(\frac{1}{2}\)\(180^0\)- A ) = \(\frac{1}{2}\) \(\left(180^0-60^0\right)\)\(60^0\)

mà IBC + ICB + BIC = \(180^0\)

suy ra BIC = \(180^0\)- ( IBC + ICB )

          BIC = \(180^0\)\(60^0\) 

          BIC = \(120^0\)

b,

ta có vì I là giao điểm của phân giác góc B và C 

suy ra phân giác góc A đi qua I suy ra tia AI trùng tia IF suy ra AF là phần giác góc A mà I cách đều AB ; AC ; BC 

nên IE = ID = IF

c,

ta có EIB + BIC =\(180^0\) 

       EIB = \(180^0-120^0\)

     EIB = \(60^0\)

    Mà EIB đối đỉnh góc DIC 

suy ra DIC = EIB =  \(60^0\)

vì IF là tia phân giác góc BIC 

nên BIF = CIF = \(\frac{1}{2}\)\(120^0\)\(60^0\)

EIF = BIE + BIF = \(60^0+60^0=120^0\)

DIF = DIC + CIF =  \(60^0+60^0=120^0\)

xét tam giác EIF và DIF có 

EIF = DIF = \(120^0\)

IF là cạnh chung 

IE = ID 

suy ra tam giác EIF = tam giác DIF ( c-g-c )

suy ra EF = DF 

ta có góc BIC đối đỉnh góc EID 

nên BIC = EID = \(120^0\)

xét tam giác EIF và EID có 

EID = EIF =\(120^0\)

ID = IF 

IE cạnh chung 

suy ra tam giác DIE = tam giác FIE ( c-g-c )

suy ra ED = EF 

mà EF = DF 

suy ra ED = EF = DF

suy ra tam giác EDF là tam giác đều 

d,

ta có IE = IF = ID 

nên I cách đều 3 đỉnh tam giác DFE nên I là giao điểm của 3 đường trung trực tam giác DEF 

mà trong tam giác đều 3 đường trung trực đồng thời là 3 đường phân giác của tam giác đó 

suy ra I là giao điểm của hai đường phân giác trong tam giác ABC vá DEF

góc DFE=180-60-70=50 độ

=>góc DFK=góc EFK=50/2=25 độ

góc DKF=góc KEF+góc KFE=70+25=95 độ

góc EKF=180-95=85 độ

22 tháng 12 2017

E H G K F 56 L 1 2 1 2

ta có góc G + góc E = 180 - 56 = 124(tính chất tổng 3 góc trong tam giác)

mặt khác góc G1 + góc G2 = 1/2 (góc G + góc E) = 124: 2 = 620

xét tam giác EGL có góc GLH là góc ngoài của tam giác nên góc GLH = góc G1 + góc E1 = 620

D E F Q F O ) 60 o ) ) )

Bài làm

a) Ta có: \(\widehat{PEF}+\widehat{PED}=\widehat{DEF}\)

Mà \(\widehat{PEF}=\widehat{PED}\)( Do EP là tia phân giác )

=> \(\widehat{PEF}+\widehat{PED}=\widehat{DEF}\)

=> \(\widehat{OEF}+\widehat{OED}=\widehat{DEF}\)

hay \(2.\widehat{OEF}=\widehat{DEF}\)

Lại có: \(\widehat{DFQ}+\widehat{QFE}=\widehat{DFE}\)

Mà \(\widehat{DFO}=\widehat{OFE}\)( QF là tia phân giác của góc F )

=> \(\widehat{DFQ}+\widehat{QFE}=\widehat{DFE}\)

hay \(\widehat{2DFO}=\widehat{DFE}\)

Xét tam giác DEF có:

\(\widehat{D}+\widehat{DEF}+\widehat{DFE}=180^0\)( Tổng ba góc trong tam giác )

hay \(60^0+2\widehat{OEF}+2\widehat{OFE}=180^0\)

=> \(2\left(\widehat{OEF}+\widehat{OFE}\right)=180^0-60^0\)

=> \(2\left(\widehat{OEF}+\widehat{OFE}\right)=120^0\)

=> \(\widehat{OEF}+\widehat{OFE}=120^0:2\)

=> \(\widehat{OEF}+\widehat{OFE}=60^0\)

Xét tam giác OEF có:

\(\widehat{OEF}+\widehat{OFE}+\widehat{EOF}=180^0\)

hay \(60^0+\widehat{EOF}=180^0\)

=> \(\widehat{EOF}=180^0-60^0=120^0\)

Vậy \(\widehat{EOF}=120^0\)

Xét tam giác DEF có:

EP là tia phân giác của góc E

FQ là tia phân giác của góc F

Mà hai tia phân giác này cắt nhau ở O

=> O là tâm của đường tròn nội tiếp tam giác.

=> OQ = OP

b) Để hai điểm P và Q cách đều đường thẳng EF của tam giác DEF <=> EQ = PF 

# Học tốt #

a: \(\widehat{E}=35^0\)

Xét ΔDEF có \(\widehat{E}< \widehat{F}< \widehat{D}\)

nên FD<DE<EF

b: Xét ΔEDH vuông tại D và ΔEKH vuông tại K có

EH chung

\(\widehat{DEH}=\widehat{KEH}\)

Do đó: ΔEDH=ΔEKH

Suy ra: HD=HK

hay ΔHDK cân tại H

25 tháng 2 2022

a: ˆE=350E^=350

Xét ΔDEF có ˆE<ˆF<ˆDE^<F^<D^

nên FD<DE<EF

b: Xét ΔEDH vuông tại D và ΔEKH vuông tại K có

EH chung

ˆDEH=ˆKEHDEH^=KEH^

Do đó: ΔEDH=ΔEKH

Suy ra: HD=HK

góc ABC+góc ACB=180-60=120 độ

=>góc IBC+góc ICB=60 độ

=>góc EIC=60 độ