a,b thuộc Z
chứng minh 3a + 4b chia hết cho 11 thì a + 5b chia hết cho 11
ghi cả cách làm nha bạn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta co:\(\hept{\begin{cases}2a+b⋮13\\5a-4b⋮13\end{cases}\Rightarrow\hept{\begin{cases}-2.\left(2a+b\right)⋮13\\5a-4b⋮13\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}-4a-2b⋮13\\5a-4b⋮13\end{cases}}\Rightarrow-4a-2b+5a-4b=a-6b\)
ta có 3a+4b chia hết cho 11
tương đương 4(3a+4b) chia hết cho 11
12a+16b chia hết cho 11
12a+16b -11a-11b chia hết cho 11
a+5b chia hết cho 11 (ĐPCM)
Ta có: \(3a+4b⋮11\Rightarrow4.\left(3a+4b\right)⋮11\Rightarrow12a+16b⋮11\)
\(\Rightarrow\left(a+5b\right)+\left(11a+11b\right)⋮11\)
\(\Rightarrow\left(a+5b\right)+11.\left(a+b\right)⋮11\)
\(\Rightarrow a+5b⋮11\)
Thông ơi ! Bạn và mk 1 đề nè
Đó là bài 5 đúng không
Khảo sát chất lượng học kì I huyện Can Lộc
Nếu đúng thì k mk nha
Hihi
^_^
Bài làm:
a, Ta có: 98⋮7⇒98a⋮798⋮7⇒98a⋮7. Mà 100a+b⋮7⇒(100a+b)−98a⋮7⇒100a+b−98a⋮7100a+b⋮7⇒(100a+b)−98a⋮7⇒100a+b−98a⋮7
⇒2a+b⋮7⇒4.(2a+b)⋮7⇒8a+4b⋮7⇒2a+b⋮7⇒4.(2a+b)⋮7⇒8a+4b⋮7
Mặt khác 7a⋮7⇒8a+4b−7a⋮7⇒a+4b⋮77a⋮7⇒8a+4b−7a⋮7⇒a+4b⋮7 (đpcm)
Vậy...
b, Ta có: 3a+4b⋮11⇒4.(3a+4b)⋮11⇒12a+16b⋮113a+4b⋮11⇒4.(3a+4b)⋮11⇒12a+16b⋮11
Mà 11(a+b)⋮11⇒11a+11b⋮1111(a+b)⋮11⇒11a+11b⋮11
⇒(12a+16b)−(11a+11b)⋮11⇒12a+16b−11a−11b⋮11⇒(12a+16b)−(11a+11b)⋮11⇒12a+16b−11a−11b⋮11
⇒a+5b⋮11⇒a+5b⋮11 (đpcm)
Vậy...
3a + 4b = 3a + 15b -11b = 3(a+5b) - 11b
vì a+5b chia hết 11 rùi
11b chia hết 11
=> 3a + 4b chia hết 11
\(3a+4b\) chia hết cho 11
\(\Leftrightarrow3a+4b+11b\) chia hết cho 11 (vì 11b chia hết cho 11)
\(\Leftrightarrow3a+15b\) chia hết cho 11
\(\Leftrightarrow3\left(a+5b\right)\) chia hết cho 11
Mà (3;11)=1
=>a+5b chia hết cho 11
=>đpcm