Cho tam giác ABC vuông tại A . Kẻ BI là phân giác của góc ABC (I thuộc AC), kẻ ID vuông tại BC tại
D . Tia DI cắt BA tại E .
1. Chứng minh: AB = BD .
2. Chứng minh: tam giác EBC cân.
3. Chứng minh:AD//EC.
4. Tính BE biết AB = 6 cm; AC = 8 cm .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét ΔBAI vuông tại A và ΔBDI vuông tại D có
BI chung
\(\widehat{ABI}=\widehat{DBI}\)
Do đó: ΔBAI=ΔBDI
Suy ra:BA=BD
2: Xét ΔAIE vuông tại A và ΔDIC vuông tại D có
IA=ID
\(\widehat{AIE}=\widehat{DIC}\)
Do đó: ΔAIE=ΔDIC
Suy ra: AE=DC
Ta có: BA+AE=BE
BD+DC=BC
mà BA=BD
và AE=DC
nên BE=BC
hay ΔBEC cân tại B
3: Xét ΔBEC có BA/AE=BD/DC
nên AD//EC
b: Xét ΔBAI vuông tại A và ΔBDI vuông tại D có
BI chung
\(\widehat{ABI}=\widehat{DBI}\)
Do đó: ΔBAI=ΔBDI
Suy ra: BA=BD và IA=ID
Ta có: BA=BD
nên B nằm trên đường trung trực của AD\(\left(1\right)\)
Ta có: IA=ID
nên I nằm trên đường trung trực của AD\(\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) suy ra BI là đường trung trực của AD
Dễ hình học mak ko có hình thôi hình tự zẻ đi!
a/ Xét tam giác BAI và tam giác BDI có:
BI chung
ABI=DBI(phân giác góc B)
góc A=góc D=90 độ
=> tam giác BAI=BDI(ch-gn)
=> AB=BD (cạnh tương ứng tik nhé
a) xét tg BAI và tg BDE có:
\(\widehat{ABI}=\widehat{IBD}\)( BI là tia pg )
BI: chung
BAI = BDI (=90 độ )
=> 2 tam giác bằng nhau (g-c-g)
=> AB=BD
1: Xét ΔBAI vuông tại A và ΔBDI vuông tại D có
BI chung
\(\widehat{ABI}=\widehat{DBI}\)
Do đó: ΔBAI=ΔBDI
Suy ra:BA=BD
2: Xét ΔAIE vuông tại A và ΔDIC vuông tại D có
IA=ID
\(\widehat{AIE}=\widehat{DIC}\)
Do đó: ΔAIE=ΔDIC
Suy ra: AE=DC
Ta có: BA+AE=BE
BD+DC=BC
mà BA=BD
và AE=DC
nên BE=BC
hay ΔBEC cân tại B
3: Xét ΔBEC có BA/AE=BD/DC
nên AD//EC