một người dự định đi xe máy từ thành phố A đến thành phố B với vận tốc 40km/h. Nhưng sau khi đi được 1h15 thì dừng lại đổ xăng 15p rồi tiếp tục đi với vận tốc 48km/h thì đến nơi đúng dự định. Tính quãng đường AB, tính thời gian dự định
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Thời gian dự định: $\frac{AB}{40}$ (giờ)
Thời gian thực tế: $\frac{AB}{50}$ (giờ)
$\frac{AB}{40}-\frac{AB}{50}=1$
$\Leftrightarrow AB.\frac{1}{200}=1$
$\Leftrightarrow AB=200$ (km)
\(90ph=1,5h\\ 30ph=0,5h\)
Quãng đường AB dài:
\(AB=v.t=60.5=300\left(km\right)\)
Quãng đường đi được sau 90ph là:
\(s_1=v.t_1=60.1,5=90\left(km\right)\)
Quãng đường còn lại là:
\(s_2=AB-s_1=300-90=210\left(km\right)\)
Thời gian đi còn lại để đến B đúng dự tính:
\(t_2=t-t_1-t'=5-1,5-0,5=3\left(h\right)\)
Vận tốc người đó đi để đến B đúng dự tính là:
\(v_2=\dfrac{s_2}{t_2}=\dfrac{210}{3}=70\left(km/h\right)\)
Gọi độ dài quãng đường là x
Thời gian dự định là x/35
Theo đề, ta có phương trình:
\(\dfrac{x}{35}=\dfrac{4}{3}+\dfrac{x-\dfrac{4}{3}\cdot35}{42}\)
=>1/35x=4/3+1/42x-10/9
=>1/210x=2/9
=>x=140/3
Giải:
Quãng đường còn lại người đó phải đi là:
150 \(\times\) (1 - \(\dfrac{1}{5}\)) = 120 (km/h)
Gọi vận tốc dự định là \(x\)(km/h) ; \(x\) > 0
Vận tốc thực tế là: \(x\) + 10 (km/h)
Thời gian người đó đi hết quãng đường còn lại với vận tốc dự định là:
120 : \(x\) = \(\dfrac{120}{x}\) (giờ)
Thời gian người đó đi hết quãng đường còn lại với vận tốc thực tế là:
120 : (\(x\) + 10) = \(\dfrac{120}{x+10}\) (giờ)
Đổi 36 phút = \(\dfrac{3}{5}\) giờ
Theo bài ra ta có phương trình:
\(\dfrac{120}{x}\) - \(\dfrac{120}{x+10}\) = \(\dfrac{3}{5}\)
120.(\(\dfrac{1}{x}\) - \(\dfrac{1}{x+10}\)) = \(\dfrac{3}{5}\)
120. \(\dfrac{x+10-x}{x\left(x+10\right)}\)= \(\dfrac{3}{5}\)
120.\(\dfrac{\left(x-x\right)+10}{x\left(x+10\right)}\) = \(\dfrac{3}{5}\)
\(\dfrac{120.10}{x\left(x+10\right)}\) = \(\dfrac{3}{5}\)
\(x\)(\(x\) + 10) = 120.10 : \(\dfrac{3}{5}\)
\(x\)(\(x+10\)) = 2000
\(x^2\) + 10\(x\) - 2000 = 0
\(\Delta\)' = 52 + 2000 = 2025 > Vậy phương trình có hai nghiệm phân biệt là
\(x_1\) = \(\dfrac{-5+\sqrt{2025}}{1}\) = 40 > 0(tm)
\(x_2\) = \(\dfrac{-5-\sqrt{2025}}{1}\) = - 50 < 0 (loại)
Vậy vận tốc ban đầu của người đó là 40 km/h
Thời gian thực tế người đó đi hết quãng đường AB là:
150 : 40 - \(\dfrac{3}{5}\) = 3,15 (giờ)
3,15 giờ = 3 giờ 9 phút
Kết luận: Vận tốc dự định của người đó là 40 km/h
Thời gian thực tế người đó đi hết quãng đường từ A đến B là 3 giờ 9 phút.