Tìm số n nhỏ nhất để: n + 1; n + 3; n + 7 đều là nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk giải câu a thui nha
để \(\frac{6n-1}{3n+2}\)là số nguyên thì:
(6n-1) sẽ phải chia hết cho(3n+2)
mà (3n+2) chja hết cho (3n+2)
=> 2(3n+2) cx sẽ chia hết cho (3n+2)
<=> (6n+4) chia hết cho (3n+2)
mà (6n-1) chia hết cho (3n+2)
=> [(6n+4)-(6n-1)] chja hết cho (3n+2)
(6n+4-6n+1) chja hết cho 3n+2
5 chia hết cho3n+2
=> 3n+2 \(\in\){1,5,-1,-5}
ta có bảng
3n+2 | 1 | 5 | -1 | -5 |
3n | 3 | 7 | 1 | -3 |
n | 1 | -1 |
vậy....
bạn có thể giải thích ra được không !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
a: Để A là phân số thì n+5<>0
hay n<>-5
b: Để A=-1/2 thì n-1/n+5=-1/2
=>2n-2=-n-5
=>3n=-3
hay n=-1
c: Để A là số nguyên thì \(n-1⋮n+5\)
\(\Leftrightarrow n+5\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
hay \(n\in\left\{-4;-6;-3;-7;-2;-8;1;-11\right\}\)
Ta có: $1+2+3+...+n=\dfrac{n(n+1)}{2}$
Nên $1+2+3+...+n>0⇔\dfrac{n(n+1)}{2}>100$
$⇔n(n+1)>200$
với $n=1;2;3;4;5;6;7;8;9;10;11;12;13$ khi thay vào ta thấy $n(n+1)<200$
nên loại
với $n=14⇒n(n+1)=14.15=210>200$ chọn
Vậy số tự nhiên n nhỏ nhất là 14 thỏa mãn đề
\(\frac{4n+1}{2n+3}=\frac{4n+6-5}{2n+3}=\frac{2\left(2n+3\right)-5}{2n+3}=2-\frac{5}{2n+3}\)
Để \(2-\frac{5}{2n+3}\) là số nguyên <=> \(\frac{5}{2n+3}\) là số nguyên
=> 2n + 3 thuộc Ư(5) = { - 5; - 1; 1; 5 }
=> 2n + 3 = { - 5; - 1; 1; 5 }
=> n = { - 4; - 2; - 1 ; 1 }