K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2022

Bạn tham khảo:

undefined

13 tháng 3 2022

undefinedundefinedundefined

21 tháng 7 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

⇒ (SCD) ⊥ (SAD)

Gọi I là trung điểm của đoạn AB. Ta có AICD là hình vuông và IBCD là hình bình hành. Vì DI // CB và DI ⊥ CA nên AC ⊥ CB. Do đó CB ⊥ (SAC).

Vậy (SBC) ⊥ (SAC).

b) Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

c) Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vậy (α) là mặt phẳng chứa SD và vuông góc với mặt phẳng (SAC) chính là mặt phẳng (SDI). Do đó thiết diện của (α) với hình chóp S.ABCD là tam giác đều SDI có chiều dài mỗi cạnh bằng a√2. Gọi H là tâm hình vuông AICD ta có SH ⊥ DI và Giải sách bài tập Toán 11 | Giải sbt Toán 11 .

Tam giác SDI có diện tích:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

23 tháng 1 2017

Đáp án A.

Ta có S A ⊥ ( A B C D )  nên A là hình chiếu của S trên mặt phẳng  A B C D   . Suy ra AD là hình chiếu của SD trên mặt phẳng A B C D .

Khi đó  S D , A B C D ^ = S D , A D ^ = S D A ^    (do S D A ^ < 90 ° ).

Do Δ S A D  vuông tại A nên  tan S D A ^ = S A A D = a 3 a = 3 ⇒ S D A ^ = 60 °   .

Vậy S D , A B C D ^ = 60 ° .

AH
Akai Haruma
Giáo viên
9 tháng 3 2021

Lời giải:

Do $SA\perp (ABCD)$ nên $\angle (SB, ABCD)=\angle (SB, AB)=\widehat{SBA}=45^0$

$\Rightarrow SAB$ là tam giác vuông cân tại $A$

$\Rightarrow SA=AB=a$ 

Áp dụng định lý Pitago: $SD=\sqrt{SA^2+AD^2}=\sqrt{a^2+(2a)^2}=\sqrt{5}a$

(SD;(ABCD))=(DS;DA)=góc SDA

tan SDA=SA/AD=3/2

=>góc SDA=56 độ

NV
19 tháng 3 2022

a.

\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp AB\\AB\perp AD\left(gt\right)\end{matrix}\right.\) \(\Rightarrow AB\perp\left(SAD\right)\)

b.

Từ câu a ta có \(AB\perp\left(SAD\right)\)

Mà \(SD\in\left(SAD\right)\)

\(\Rightarrow AB\perp SD\)

a: (SBD) giao (ABCD)=BD

AB vuông góc BD

SB vuông góc BD

=>góc cần tìm là góc SBA

23 tháng 11 2019

Đáp án D