Cho ba số dương a,b,c thay đổi thỏa mán a2 + b2 + c2 =3. Tìm giá trị nhỏ nhất của biểu thức \(P=2\left(a+b+c\right)+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(0< a^2+b^2+c^2=3\Rightarrow a^2,b^2,c^2< 3\Rightarrow a,b,c< \sqrt{3}< 2\)
Xét bất đẳng thức phụ: \(2a+\frac{1}{a}\ge\frac{1}{2}a^2+\frac{5}{2}\)(*)
Thật vậy: (*)\(\Leftrightarrow\frac{\left(a-1\right)^2\left(2-a\right)}{2a}\ge0\)*đúng*
Áp dụng, ta được: \(P\ge\frac{1}{2}\left(a^2+b^2+c^2\right)+\frac{5}{2}.3=9\)
Đẳng thức xảy ra khi a = b = c = 1
ap dung bdt \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)
\(\frac{1}{2a+b+c}=\frac{1}{\left(a+b\right)+\left(a+c\right)}\le\frac{1}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\)
\(\Rightarrow P\le\frac{1}{16}\left[\left(\frac{1}{a+b}+\frac{1}{a+c}\right)^2+\left(\frac{1}{a+b}+\frac{1}{b+c}\right)^2+\left(\frac{1}{b+c}+\frac{1}{a+c}^2\right)\right]\)
\(\Rightarrow16P\le\frac{2}{\left(a+b\right)^2}+\frac{2}{\left(b+c\right)^2}+\frac{2}{\left(a+c^2\right)}+\frac{2}{\left(a+b\right)\left(b+c\right)}+\frac{2}{\left(a+b\right)\left(a+c\right)}\)\(+\frac{2}{\left(b+c\right)\left(c+a\right)}\)
ap dung \(x^2+y^2+z^2\ge xy+yz+xz\) voi a+b=x, b+c=y, c+a=z
\(16P\le\frac{4}{\left(a+b\right)^2}+\frac{4}{\left(b+c\right)^2}+\frac{4}{\left(c+a\right)^2}\)
tiếp tục áp dụng bdt ban đầu \(\frac{4}{a+b}\le\frac{1}{a}+\frac{1}{b}\)
\(\Rightarrow\frac{1}{\left(a+b\right)^2}\le4.16.\left(\frac{1}{a}+\frac{1}{b}\right)^2\)
\(\Rightarrow16P\le\frac{1}{4}.16\left[\left(\frac{1}{a}+\frac{1}{b}\right)^2+\left(\frac{1}{b}+\frac{1}{c}\right)^2+\left(\frac{1}{c}+\frac{1}{a}\right)^2\right]\)
=\(\frac{1}{4}\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}\right)\)
tiep tuc ap dung bo de thu 2 ta co
\(16P\le\frac{1}{4}.4\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)=3\)
\(\Rightarrow p\le\frac{3}{16}\)dau =khi a=b=c=1
Rút gọn Q = a2 + b2 + a2 + b2 -6a/b - 6b/a + 9/a2 + 9/b2 = a2 - 6a/b + 9/b2 + b2 - 6b/a + 9/a2 + a2 + b2
= ( a - 3/b )2 + (b - 3/a )2 + a2 + b2 = (a - 3/b )2 + 2(ab - 3) + b2 + (b - 3/a)2 - 2(ab - 3) + a2 = (a - 3/b ) ^2 +2(a - 3/b)b + b^2 + (b - 3/a)^2 -2(b-3/a)a +a^2 = (a -3/b +b )^2 + (b-3/a-a)^2 = (2-3/b)^2 + (b-3/a-a)^2 mik chỉ bik làm tới đây thôi bạn thông cảm mak hình như giá trị nhỏ nhất của Q là 25 tại a=3/2,b=1/2 hoặc a=3/2,b=1/2
cái này bọn mik làm rồi này, cậu chia cả tử và mẫu cho a^2 ;b^2(lần lượt nhé và chỉ 2 phân thức đầu thôi)
sau đó
rồi cậu rút gọn mẫu và đặt b/a=x;c/b=y=> c/a=xy
rồi ... cô si các kiểu
bài này chi đề xuất để biết thêm chi tiết liên hệ với đào khánh chi thông minh hok giỏi nhất đội tuyển toán trường THCS 14-10
Dự đoán \(MinP=\frac{3}{4}\)khi a = b = c
Ta có: \(\frac{c}{4a}=\frac{c^2}{4ca}\ge\frac{c^2}{\left(c+a\right)^2}\)(Theo BĐT AM - GM)
Nên ta cần chứng minh \(\frac{a^2}{\left(a+b\right)^2}+\frac{b^2}{\left(b+c\right)^2}+\frac{c^2}{\left(c+a\right)^2}\ge\frac{3}{4}\)
Ta có bất đẳng thức quen thuộc sau: \(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\)(BĐT Bunyakovsky dạng phân thức)
Áp dụng, ta được: \(\frac{a^2}{\left(a+b\right)^2}+\frac{b^2}{\left(b+c\right)^2}+\frac{c^2}{\left(c+a\right)^2}\ge\frac{1}{3}\left(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\right)^2\)
Đến đây, ta cần chỉ ra rằng: \(\frac{1}{3}\left(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\right)^2\ge\frac{3}{4}\)
\(\Leftrightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\ge\frac{3}{2}\)
Ta viết bất đẳng thức cần chứng minh thành \(\frac{1}{\left(1+\frac{b}{a}\right)^2}+\frac{1}{\left(1+\frac{c}{b}\right)^2}+\frac{1}{\left(1+\frac{a}{c}\right)^2}\ge\frac{3}{4}\)
Đặt \(x=\frac{b}{a};y=\frac{c}{b};z=\frac{a}{c}\)khi đó xyz = 1 và ta cần chứng minh \(\frac{1}{\left(1+x\right)^2}+\frac{1}{\left(1+y\right)^2}+\frac{1}{\left(1+z\right)^2}\ge\frac{3}{4}\)
Lại đặt \(x=\frac{np}{m^2};y=\frac{mp}{n^2};z=\frac{mn}{p^2}\)(m, n, p > 0). Khi đó bất đẳng thức được viết lại thành:
\(\frac{1}{\left(1+\frac{np}{m^2}\right)^2}+\frac{1}{\left(1+\frac{mp}{n^2}\right)^2}+\frac{1}{\left(1+\frac{mn}{p^2}\right)^2}\ge\frac{3}{4}\)\(\Leftrightarrow\frac{m^4}{\left(m^2+np\right)^2}+\frac{n^4}{\left(n^2+mp\right)^2}+\frac{p^4}{\left(p^2+mn\right)^2}\ge\frac{3}{4}\)
Áp dụng bất đẳng thức Bunyakovsky dạng phân thức thì được: \(\frac{m^4}{\left(m^2+np\right)^2}+\frac{n^4}{\left(n^2+mp\right)^2}+\frac{p^4}{\left(p^2+mn\right)^2}\)\(\ge\frac{\left(m^2+n^2+p^2\right)^2}{\left(m^2+np\right)^2+\left(n^2+mp\right)^2+\left(p^2+mn\right)^2}\)
Và ta cần chứng minh \(\frac{\left(m^2+n^2+p^2\right)^2}{\left(m^2+np\right)^2+\left(n^2+mp\right)^2+\left(p^2+mn\right)^2}\ge\frac{3}{4}\)
\(\Leftrightarrow m^4+n^4+p^4+5\left(m^2n^2+n^2p^2+p^2m^2\right)\ge6mnp\left(m+n+p\right)\)
Ta có: \(m^4+n^4+p^4+5\left(m^2n^2+n^2p^2+p^2m^2\right)\ge\)\(\left(m^2n^2+n^2p^2+p^2m^2\right)+5\left(m^2n^2+n^2p^2+p^2m^2\right)\)\(=6\left(m^2n^2+n^2p^2+p^2m^2\right)\)\(\ge6mnp\left(m+n+p\right)\)
Vậy bất đẳng thức được chứng minh.
Đẳng thức xảy ra khi a = b = c
\(P=2\Sigma a+\Sigma\dfrac{1}{a}=\Sigma a+\Sigma a+\Sigma\dfrac{1}{a}\ge3.\sqrt[3]{\left(\Sigma a\right)^2.\Sigma\dfrac{1}{a}}\)
\(Q=\left(\Sigma a\right)^2.\Sigma\dfrac{1}{a}=\left(3+2\Sigma ab\right).\Sigma\dfrac{1}{a}=3\Sigma\dfrac{1}{a}+4\Sigma a+2\Sigma\dfrac{ab}{c}\ge3\Sigma\dfrac{1}{a}+6\Sigma a=3\left(\Sigma\dfrac{1}{a}+2\Sigma a\right)=3P\)\(\Rightarrow\)\(P\ge3\sqrt[3]{3P}\) \(\Leftrightarrow P^3\ge81P\Leftrightarrow P^2\ge81\left(P>0\right)\Leftrightarrow P\ge9\)
" = " \(\Leftrightarrow a=b=c=1\)
Vì $\large a,b,c \in\mathbb{N^*}$ và $\large a^2+b^2+c^2=3\Rightarrow \left\{\begin{matrix} a<\sqrt{3} & \\ b<\sqrt{3} & \\ c<\sqrt{3} & \end{matrix}\right.$
Ta chứng minh bất đẳng thức phụ sau:
Với $0 <x<\sqrt{3}$ thì $2x+\frac{1}{x} \ge x^2.\frac{1}{2}+\frac{5}{2}(*)$
Thật vậy $(*)$ $\large \Leftrightarrow (x-2)(x-1)^2 \le0$
Do $\large x<\sqrt{3}\Leftrightarrow x<2\Leftrightarrow (x-2)(x-1)^2<0$ (Luôn đúng)
Do đó bất đẳng thức được chứng minh
Dấu $"="$ xảy ra khi $x=1$
Trở lại bài toán:
Áp dụng BĐT $(*)$ ta được:
$\large 2a+\frac{1}{a}+2b+\frac{1}{b}+2c+\frac{1}{c}\ge\frac{1}{2}(a^2+b^2+c^2)+\frac{15}{2}=9$
Do $a^2+b^2+c^2=3$
Vậy $GTNN=9$
Dấu $"="$ xảy ra khi: $a=b=c=1$