K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2023

hộ e cái mọi người ơi

 

22 tháng 11 2022

a: Xét tứ giác BFEC có góc BFC=góc BEC=90 độ

nên BFEC là tứ giác nội tiếp

b: Xét (O) có

ΔBCK nội tiếp

BK là đường kính

Do đó: ΔBCK vuông tại C

=>CK//AH

Xét (O) có

ΔBAK nội tiếp

BK là đường kính

Do đó: ΔBAK vuông tại A

=>AK//CH

Xét tứ giác CHAK có

CH//AK

CK//AH

DO đó: CHAK là hình bình hành

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

góc A chung

=>ΔABD đồng dạng với ΔACE

b: ΔABD đồng dạng với ΔACE
=>AD/AE=AB/AC

=>AD/AB=AE/AC
=>ΔADE đồng dạng với ΔABC

=>góc ADE=góc ABC

 

a) Xét tứ giác AEDC có 

\(\widehat{AEC}=\widehat{ADC}\left(=90^0\right)\)

\(\widehat{AEC}\) và \(\widehat{ADC}\) là hai góc cùng nhìn cạnh AC

Do đó: AEDC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

b) Ta có: KI\(\perp\)BC(gt)

AH\(\perp\)BC(gt)

Do đó: KI//AH(Định lí 1 từ vuông góc tới song song)

Suy ra: \(\widehat{HAI}=\widehat{KIA}\)(hai góc so le trong)(1)

Ta có: ΔABK=ΔIBK(cmt)

nên KA=KI(hai cạnh tương ứng)

Xét ΔKAI có KA=KI(cmt)

nên ΔKAI cân tại K(Định nghĩa tam giác cân)

Suy ra: \(\widehat{KAI}=\widehat{KIA}\)(hai góc ở đáy)(2)

Từ (1) và (2) suy ra \(\widehat{HAI}=\widehat{KAI}\)

\(\Leftrightarrow\widehat{HAI}=\widehat{CAI}\)

Suy ra: AI là tia phân giác của \(\widehat{HAC}\)(Đpcm)

a) Xét ΔABK vuông tại A và ΔIBK vuông tại I có 

BK chung

\(\widehat{ABK}=\widehat{IBK}\)(BK là tia phân giác của \(\widehat{ABI}\))

Do đó: ΔABK=ΔIBK(Cạnh huyền-góc nhọn)

a: ΔHAC vuông tại H 

=>ΔHAC nội tiếp đường tròn đường kính AC

=>I là giao điểm của 3 đường trung trực của ΔAHC

Xét ΔHAC có HK/HA=HD/HC

nên KD//AC

b: DK//AC

AC vuông góc AB

=>DK vuông góc AB

Xét ΔBAD có

DK,AH là đường cao

DK cắt AH tại K

=>K là trực tâm

=>BK vuông góc AD

a,b: Xét ΔOIB vuông tạiI và ΔOKC vuông tại K có

góc IOB=góc KOC

=>ΔOIB đồng dạng vơi ΔOKC

=>OI/OK=OB/OC

=>OI*OC=OK*OB

c: Xét ΔBOH vuông tại H và ΔBCK vuông tại K có

góc OBH chung

=>ΔBOH đồng dạng với ΔBCK

d: Xét ΔCHO vuông tại H và ΔCIB vuông tại I có

góc HCO chung

=>ΔCHO đồng dạng với ΔCIB

=>CH/CI=CO/CB

=>CH*CB=CI*CO

ΔBOH đồng dạng với ΔBCK

=>BO/BC=BH/BK

=>BO*BK=BH*BC

BO*BK+CO*CI=BH*BC+CH*BC=BC^2

ΔABC cân tại A có AH là đường cao

nên AH là phân giác của góc BAC

Xét ΔABC có

AH, BK là phân giác

AH cắt BK tại O

=>O là tâm đường tròn nội tiếp

=>CO là phân giác của góc ACB