K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2021

Vì cung ACAC có số đo 50∘50∘ nên ˆAOC=50∘AOC^=50∘

Vì AO⊥CD;AO//DE⇒CD⊥DEAO⊥CD;AO//DE⇒CD⊥DE⇒ˆCDE=90∘⇒CDE^=90∘ mà C,D,E∈(O)C,D,E∈(O) nên CECE là đường kính hay C;O;EC;O;E thẳng hàng

Xét (O)(O) có OAOA là đường cao trong tam giác cân ODCODC nên OAOA cũng là đường phân giác ⇒ˆCOA=ˆAOD=50∘⇒COA^=AOD^=50∘

Lại thấy ˆBOE=ˆAOC=50∘BOE^=AOC^=50∘ (đối đỉnh) suy ra ˆAOC=ˆAOD=ˆBOE=50∘AOC^=AOD^=BOE^=50∘ (D đúng) và suy ra  cung ACAC bằng cung BEBE nên B đúng.

Ta có  ˆDOE=180∘−ˆAOD−ˆBOE=80∘DOE^=180∘−AOD^−BOE^=80∘  nên cung AD<AD< cung DE⇒AD<DEDE⇒AD<DE hay đáp án A sai.

Lại có ˆAOE=ˆAOD+ˆDOE=50∘+80∘=130∘AOE^=AOD^+DOE^=50∘+80∘=130∘ và ˆBOD=ˆBOE+ˆDOE=50∘+80∘=130∘BOD^=BOE^+DOE^=50∘+80∘=130∘

Nên ˆAOE=ˆBODAOE^=BOD^ suy ra số đo cung AE=AE= số đo cung BD.BD. Do đó C đúng.

Phương án B, C, D đúng và A sai.

3 tháng 5 2016

xet tg BCDE ta co;

góc acb = 90 ( goc noi tiep chan nua dg tron)

goc DEB =90(gt)

vay tg BCDE noi tiep( t/c cua tg noi tiep)

9 tháng 9 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ta có: HA = HC (gt)

AB ⊥ DE (gt)

Suy ra: HD = HE (đường kính vuông góc với dây cung)

Tứ giác ADCE có hai đường chéo cắt nhau tại trung điểm của mỗi đường nên nó là hình bình hành

Lại có: AC ⊥ DE

Suy ra tứ giác ADCE là hình thoi

Sửa đề: DO cắt AC tại E

a) Xét (O) có 

DA là tiếp tuyến có A là tiếp điểm(gt)

DC là tiếp tuyến có C là tiếp điểm(gt)

Do đó: DA=DC(Tính chất hai tiếp tuyến cắt nhau)

Ta có: DA=DC(Cmt)

nên D nằm trên đường trung trực của AC(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: OA=OC(=R)

nên O nằm trên đường trung trực của AC(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra DO là đường trung trực của AC

\(\Leftrightarrow DO\perp AC\)

mà DO cắt AC tại E(gt)

nên \(DO\perp AC\) tại E

Xét tứ giác CEOH có 

\(\widehat{CEO}\) và \(\widehat{CHO}\) là hai góc đối

\(\widehat{CEO}+\widehat{CHO}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: CEOH là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

12 tháng 4 2022

Tham khảo 

https://asknlearn247.com/question/cho-duong-tron-o-r-duong-kinh-ab-co-dinh-tren-tia-doi-cua-tia-ab-lay-diem-c-sao-cho-ac-r-qua-c-k-2018212/

12 tháng 4 2022

a, Xét (O), đường kính AB có: M ∈ (O)

⇒ ˆAMB=90°AMB^=90° (góc nội tiếp chắn nửa đường tròn)

⇒ AM ⊥ BP ⇒ ˆAMP=90°AMP^=90°

PC ⊥ AC (gt) ⇒ ˆACP=90°ACP^=90° Hay ˆBCP=90°BCP^=90°

Xét tứ giác ACPM có: ˆAMP+ˆACP=90°+90°=180°AMP^+ACP^=90°+90°=180°

Mà hai góc này ở vị trí đối nhau

⇒ Tứ giác ACPM nội tiếp đường tròn đường kính AP

b, Xét ΔBMA và ΔBCP có:

ˆBMA=ˆBCP=90°BMA^=BCP^=90° 

ˆPBCPBC^: góc chung

⇒ ΔBMA ~ ΔBCP (g.g)

⇒ BMBC=BABPBMBC=BABP (các cặp cạnh tương ứng tỉ lệ)

⇒ BM.BP = BA.BC

Có BC=BA+CA=2R+R=3R

⇒ BM.BP=BA.BC=2R.3R=6R²

c, Tứ giác ACPM nội tiếp đường tròn đường kính AP (cmt)

⇒ ˆCPA=ˆCMACPA^=CMA^ (góc nội tiếp chắn CACA⏜)

Hay ˆCPQ=ˆCMACPQ^=CMA^

Xét (O) có: A, M, N, Q ∈ (O)

⇒ Tứ giác AMNQ nội tiếp (O)

⇒ ˆAQN+ˆAMN=180°AQN^+AMN^=180° (tổng hai góc đối trong tứ giác nội tiếp)

Mà ˆAMC+ˆAMN=180°AMC^+AMN^=180° (hai góc kề bù)

⇒ ˆAQN=ˆCMAAQN^=CMA^ Hay ˆPQN=ˆCMAPQN^=CMA^

Mà ˆCPQ=ˆCMACPQ^=CMA^ (cmt)

⇒ ˆCPQ=ˆPQNCPQ^=PQN^

Mà hai góc này ở vị trí so le trong so PQ cắt CP và NQ

⇒ CP // NQ

d, Gọi D là trung điểm của BC, kẻ đường thẳng qua Q song song với MO cắt AO tại I

Mà BC cố định ⇒ D cố định

Có O, D cố định ⇒ I cố định

Xét ΔMBC có: G là trọng tâm của ΔMBC (gt)

⇒ DGDM=13DGDM=13

Xét ΔOMD có: GI // MO (cách vẽ)

⇒ DGDM=GIMODGDM=GIMO (hệ quả định lí Talet)

⇒ GIMO=13⇒GI=MO3=R3GIMO=13⇒GI=MO3=R3

Mà R không đổi

⇒ G luôn cách I một khoảng bằng R3R3

⇒ Khi M di động, G luôn thuộc đường tròn tâm I, bán kính R3R3

23 tháng 4 2019

Đề kiểm tra Toán 9 | Đề thi Toán 9

b) Dây DE của (O) vuông góc với đường kính AB

⇒ AB đi qua trung điểm của DE hay H là trung điểm của AB

Xét tứ giác ADCE có:

H là trung điểm của AB

H là trung điểm của AC

⇒ Tứ giác ADCE là hình bình hành

Lại có: AC ⊥ DE

⇒ Tứ giác ADCE là hình thoi.

6 tháng 1 2021

a) AC \(\perp\) DE tại M

=> MD = ME

Tứ giác ADBE có:

MD =ME, MA = MB (gt) 

AB \(\perp\) DE

=> Tứ giác DAEB là hình thoi

b) Ta có: góc BIC = 90o (góc nội tiếp chắn nửa đường tròn (O'))

góc ADC = 90(góc nội tiếp chắn nửa đường tròn (O))

=> BI \(\perp\) CD , AD \(\perp\) DC, nên AI // BI

mà BE //AD => E,B,I thẳng hàng

Tam giác DIE có MI là đường trung tuyến với cạnh huyền => MI = MD

Do MI =MD(cmt)

=> tam giác MDI cân tại M

=> góc MID = góc MDI

O'I = O'C=R'

=> tam giác O'IC cân tại O'

=> Góc O'IC = góc O'CI

Suy ra: \(\widehat{MID}+\widehat{O'IC}=\widehat{MDI}+\widehat{O'CI}=90^o\) (tam giác MCD vuông tại M)

Vậy MI vuông góc O'I tại , O'I =R' bán kính đường tròn(O')

=> MI là tiếp tuyến đường tròn (O')

c) \(\widehat{BIC}=\widehat{BIM}\) (góc nội tiếp, góc tạo bởi tia tiếp tuyến và dây cùng chắn cung BI)

\(\widehat{BCI}=\widehat{BIH}\) (cùng phụ góc HIC)

=> \(\widehat{BIM}=\widehat{BIH}\)

=> IB là phân giác \(\widehat{MIH}\) trong tam giác MIH

ta lại có BI vuông góc CI

=> IC là phân giác ngoài tại đỉnh I của tam giác MIH

Áp dụng tính chất phân giác đối với tam giác MIH

\(\dfrac{BH}{MB}=\dfrac{IH}{MI}=\dfrac{CH}{CM}\) => \(CH.BM=BH.MC\) (đpcm)