Chứng minh
( n2 + 3n - 1) ( n + 2 ) - n3 + 2 chia hết cho 10
( 2m -3 ) ( 3n - 2 ) - ( 3m - 2 ) ( 2n - 3 ) chia hết cho 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( 2m - 3 )( 3n - 2 ) - ( 3m - 2 )( 2n - 3 )
= 6mn - 4m - 9n + 6 - ( 6mn - 9m - 4n + 6 )
= 6mn - 4m - 9n + 6 - 6mn + 9m + 4n - 6
= 5m - 5n
= 5( m - n ) \(⋮\)5 với mọi m, n thuộc Z ( đpcm )
Ta có : n(2n - 3) - 2n(n + 1)
= 2n2 - 3n - 2n2 - 2n
= 2n2 - 2n2 - 3n - 2n
= -5n
Mà n nguyên nên -5n chia hết cho 5
a, Ta có
n(2n-3)-2n(n+1)=2n2-3n-2n2-2n
=-5n chia hết cho 5
=> DPCM
b, Ta có (2m-3)(3n-2)-(3m-2)(2n-3)
Lại có (2m-3)(3n-2)=-(3-2m)(3-2n)=(3-2m)(2n-3)
=> (2m-3)(3n-2)-(3m-2)(2n-3)=(2m-3)(3n-2)-(2m-3)(3-2n)=0
=> (2m-3)(3n-2)-(3m-2)(2n-3)=0
=>(2m-3)(3n-2)-(3m-2)(2n-3) chia hết cho 5
=> DPCM
a: \(n^3-2⋮n-2\)
=>\(n^3-8+6⋮n-2\)
=>\(6⋮n-2\)
=>\(n-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
=>\(n\in\left\{3;1;4;0;5;-1;8;-4\right\}\)
b: \(n^3-3n^2-3n-1⋮n^2+n+1\)
=>\(n^3+n^2+n-4n^2-4n-4+3⋮n^2+n+1\)
=>\(3⋮n^2+n+1\)
=>\(n^2+n+1\in\left\{1;-1;3;-3\right\}\)
mà \(n^2+n+1=\left(n+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\forall n\)
nên \(n^2+n+1\in\left\{1;3\right\}\)
=>\(\left[{}\begin{matrix}n^2+n+1=1\\n^2+n+1=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n^2+n=0\\n^2+n-2=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}n\left(n+1\right)=0\\\left(n+2\right)\left(n-1\right)=0\end{matrix}\right.\Leftrightarrow n\in\left\{0;-1;-2;1\right\}\)
(2m-3)(3n-2)-(3m-2)(2n-3)
= (6mn-9n-4m+6) - (6mn-4n-9m+6)= 5m-5n=5(m-n) Ta có : 5 (m-n) chia hết cho 5 => (2m-3)(3n-2)-(3m-2)(2n-3) chia hết cho 5Bước đến nhà em bóng xế tà
Đứng chờ năm phút bố em ra
Lơ thơ phía trước vài con chó
Lác đác đằng sau chiếc chổi chà
Sợ quá anh chuồn quên đôi dép
Bố nàng ngoác mỏ đứng chửi cha
Phen này nhất quyết thuê cây kiếm
Trở về chém ổng đứt làm ba
= ( 6mn - 9n - 4m + 6 ) - ( 6mn - 9m - 4n + 6 )
= 6mn -9n -4m +6 - 6mn +9m +4n - 6
= -9n - 4m + 9m + 4n
= 5m - 5n
= 5 ( m-n )
Vì 5 chia hết cho 5 => 5(m-n) chia hết cho 5 => đpcm
Có: \(n^3+3n^2+2n=n^3+n^2+2n^2+2n\)
\(=n^2\left(n+1\right)+2n\left(n+1\right)=\left(2n+n^2\right)\left(n+1\right)\)
\(=n\left(n+2\right)\left(n+1\right)=n\left(n+1\right)\left(n+2\right)\)
Có \(n;n+1;n+2\)là 3 số nguyên liên tiếp
\(\Rightarrow\)trong đó có một số chia hết cho 3; có ít nhất một số chia hết cho 2
\(\Rightarrow\)\(n\left(n+1\right)\left(n+2\right)\)chia hết cho \(2\times3\)
\(\Rightarrow\)\(n\left(n+1\right)\left(n+2\right)\)chia hết cho 6
\(\Rightarrow\)\(n^3+3n^2+2n\)chia hết cho 6
Bạn Phạm Trần Minh Ngọc làm thiếu rồi, mình phải có thêm dữ kiện 2 và 3 là 2 số nguyên tố cùng nhau nữa mới đủ ~~