cho x+y=1 tính GTBT M=x^3+3xy+y^3 bằng 2 cách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có (x+y)\(^3\)= x\(^3\)+y\(^3\)+3x \(^2\)y+3xy\(^2\)
\(\Leftrightarrow\)( x+y) \(^3\)=x\(^3\)+y \(^3\)+3yx (x+y)
mà x+y=1 nên:
1= x\(^3\)+ y\(^3\)+3xy .1
Vậy A =1
\(x^3+y^3-2x^2-2y^2+3xy\left(x+y\right)-4xy+3\left(x+y\right)+10=\left[x^3+y^3+3xy\left(x+y\right)\right]-2\left(x^2+2xy+y^2\right)+3\left(x+y\right)+10=\left(x+y\right)^3-2\left(x+y\right)^2+3\left(x+y\right)+10=5^3-2.5^2+3.5+10=100\)
a) \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)
\(A=x^2+2x+y^2-2y-2xy+37\)
\(A=\left(x^2-2xy+y^2\right)+\left(2x-2y\right)+37\)
\(A=\left(x-y\right)^2+2\left(x-y\right)+37\)
\(A=\left(x-y\right)^2+2\left(x-y\right)+1+36\)
\(A=\left(x-y+1\right)^2+36\)
Thay x - y = 7 vào A
\(A=\left(7+1\right)^2+36\)
\(A=8^2+36\)
\(A=64+36\)
\(A=100\)
b) \(B=x^3+x^2-y^3+y^2+xy-3x^2y+3xy^2-3xy-9\)
\(B=\left(x^3-3x^2y+3xy^2-y^3\right)+\left(x^2+xy-3xy+y^2\right)-9\)
\(B=\left(x-y\right)^3+\left(x^2-2xy+y^2\right)-9\)
\(B=\left(x-y\right)^3+\left(x-y\right)^2-9\)
Thay x - y = 7 vào B
\(B=7^3+7^2-9\)
\(B=343+49-9\)
\(B=383\)
c) \(C=x^3-x^2-y^3-y^2-3xy\left(x-y\right)+2xy\)
\(C=\left[x^3-y^3-3xy\left(x-y\right)\right]-\left(x^2-2xy+y^2\right)\)
\(C=\left(x-y\right)^3-\left(x-y\right)^2\)
Thay x - y = 7 vào C
\(C=7^3-7^2\)
\(C=343-49\)
\(C=294\)
d) \(D=x^2\left(x+1\right)-y^2\left(y-1\right)+xy-3xy\left(x-y+1\right)-95\)
\(D=x^3+x^2-y^3+y^2+xy-3x^2y+3xy^2-3xy-95\)
\(D=\left(x^3-3x^2y+3xy^2-y^3\right)+\left(x^2-2xy+y^2\right)-95\)
\(D=\left(x-y\right)^3+\left(x-y\right)^2-95\)
Thay x - y = 7 vào D
\(D=7^3+7^2-95\)
\(D=343+49-95\)
\(D=297\)
A=(2x-3y)2-(x-y)3-4x2-y3+3xy(y-x)=4x2-12xy+9y2-x3+3x2y-3xy2+y3-4x2-y3+3xy2-3x2y=9y2-12xy-x3
Thay x=2 và y=-1 vào A.Ta có:A=9.(-1)2-12.2.(-1)-23=7
vì x+y=1 nên (x+y)3 = 13=1
áp dụng hằng đẳng thức ta có
\(\left(x+y\right)^3=x^3+3x^2y+3xy^2+y^3=1\)
\(x^3+y^3=1-3x^2y-3xy^2\)
\(x^3+y^3=1-3xy\left(x+y\right)\)
\(x^3+y^3=1-3xy\)
\(x^3+y^3+3xy=1\)
cách 2:
vì x+y=1 nên => x=1-y
thay x=1-y vào M ta được
\(\left(1-y\right)^3+3\left(1-y\right)y+y^3\)
\(=1^3-3y+3y^2-y^3+3y-3y^2+y^3\)
\(=1^3=1\)