x2+y2-3x-y+2=0
a)chứng minh phương trình luôn có nghiệm theo x
b) tìm y theo x thỏa mãn phương trình trên
c) hãy phân tích đa thức x2-y2-3x-y+2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Viết lại phương trình như sau: x2 - 3x + 2 - y - y2 = 0
Coi x là ẩn; y là tham số
ta có: \(\Delta\) = (-3)2 - 4(2 - y - y2 ) = 4y2 + 4y + 1 = (2y + 1)2 \(\ge\) 0 với mọi y
=> phương trình đã cho luôn có nghiệm là : \(x_1=\frac{3+2y+1}{2}=y+2;x_2=\frac{3-2y-1}{2}=1-y\)
b) x = y + 2 và x = 1 - y thoả mãn phương trình
=> y = x - 2 và y = 1 - x thoả mãn phương trình
c) do x = y + 2 và x = 1 - y là nghiệm của phương trình x2 - 3x + 2 - y - y2 = 0
=> x2 - 3x + 2 - y - y2 = (x - y - 2). (x - 1+ y)
*) Chú ý: Nếu x1; x2 là nghiệm của ax2 + bx + c = 0 => ax2 + bx + c = a.(x - x1)(x - x2)
Help!!
(x2+x+1)(x2+x+2)=12
x(x+1)(x2+x+1)=42
(x2+x+1)2= 3(x4+x2+1)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{5}{3}\\x_1x_2=-2\end{matrix}\right.\)
Ta có: \(\left\{{}\begin{matrix}y_1+y_2=2x_1-x_2+2x_2-x_1\\y_1y_2=\left(2x_1-x_2\right)\left(2x_2-x_1\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y_1+y_2=x_1+x_2\\y_1y_2=-2x_1^2-2x_2^2+5x_1x_2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y_1+y_2=-\dfrac{5}{3}\\y_1y_2=-2\left(x_1+x_2\right)^2+9x_1x_2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y_1+y_2=-\dfrac{5}{3}\\y_1y_2=-2.\left(-\dfrac{5}{3}\right)^2+9.\left(-2\right)=-\dfrac{212}{9}\end{matrix}\right.\)
\(\Rightarrow y_1;y_2\) là nghiệm của:
\(y^2+\dfrac{5}{3}y-\dfrac{212}{9}=0\Leftrightarrow9y^2+10y-212=0\)
a) Ta có: \(\text{Δ}=\left[-2\left(m-1\right)\right]^2-4\cdot1\cdot\left(-m\right)\)
\(=\left(2m-2\right)^2+4m\)
\(=4m^2-8m+4+4m\)
\(=4m^2-4m+4\)
\(=4m^2-4m+1+3\)
\(=\left(2m-1\right)^2+3>0\forall x\)
Do đó: Phương trình luôn có hai nghiệm x1,x2 với mọi m(Đpcm)
b) Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)=2m-2\\x_1\cdot x_2=-m\end{matrix}\right.\)
Ta có: \(y_1+y_2=x_1+\dfrac{1}{x_2}+x_2+\dfrac{1}{x_1}\)
\(=\left(x_1+x_2\right)+\left(\dfrac{1}{x_1}+\dfrac{1}{x_2}\right)\)
\(=\left(2m-2\right)+\dfrac{2m-2}{-m}\)
\(=2m-2-\dfrac{2m-2}{m}\)
\(=\dfrac{2m^2-2m-2m+2}{m}\)
\(=\dfrac{2m^2-4m+2}{m}\)
\(=\dfrac{2\left(m^2-2m+1\right)}{m}\)
\(=\dfrac{2\left(m-1\right)^2}{m}\)
Ta có: \(y_1y_2=\left(x_1+\dfrac{1}{x_2}\right)\left(x_2+\dfrac{1}{x_1}\right)\)
\(=x_1x_2+2+\dfrac{1}{x_1x_2}\)
\(=-m+2+\dfrac{1}{-m}\)
\(=-m+2-\dfrac{1}{m}\)
\(=\dfrac{-m^2}{m}+\dfrac{2m}{m}-\dfrac{1}{m}\)
\(=\dfrac{-m^2+2m-1}{m}\)
\(=\dfrac{-\left(m-1\right)^2}{m}\)
Phương trình đó sẽ là:
\(x^2-\dfrac{2\left(m-1\right)^2}{m}x-\dfrac{\left(m-1\right)^2}{m}=0\)
x + m + 1 y = 1 4 x − y = − 2 ⇔ y = 4 x + 2 x + m + 1 4 x + 2 = 1 ⇔ y = 4 x + 2 x + 4 x m + 1 + 2 m + 1 = 1 ⇔ y = 4 x + 2 x 4 m + 5 = − 2 m + 1
Nếu m = − 5 4 ⇒ 0 x = 3 2 (vô lý)
Nếu m ≠ − 5 4 ⇒ x = − 2 m − 2 4 m + 5 ⇒ y = 4 x + 2 = 6 4 m + 5
Theo bài ra: x 2 + y 2 = 1 4 ⇒ − 2 m − 1 4 m + 5 2 + 6 4 m + 5 2 = 1 4
⇔ 4 ( 4 m 2 + 4 m + 1 + 36 ) = 16 m 2 + 40 m + 25 ⇔ 24 m = 124 ⇔ m = 41 8
Đáp án:A
1, Với x >= 0 ; x khác 1
\(P=\dfrac{\sqrt{x}\left(x-1\right)+2\sqrt{x}\left(\sqrt{x}-1\right)-\left(3x+1\right)\left(\sqrt{x}+1\right)}{\left(x-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x\sqrt{x}+2x-3\sqrt{x}-3x\sqrt{x}-3x-\sqrt{x}-1}{\left(x-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{-2x\sqrt{x}-x-4\sqrt{x}-1}{\left(x-1\right)\left(\sqrt{x}+1\right)}\)
mình sửa đề câu 2 nhé
a, \(x^2+mx-1=0\)
\(\Delta=m^2-4\left(-1\right)=m^2+4>0\)
Vậy pt luôn có 2 nghiệm pb
b, Theo Vi et : \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=-1\end{matrix}\right.\)
Ta có : \(\left(x_1+x_2\right)^2-2x_1x_2=7\)
Thay vào ta được : \(m^2+2=7\Leftrightarrow m^2=5\Leftrightarrow m=\pm\sqrt{5}\)
a) Thay \(m=7\) vào phương trình, ta được:
\(x^2-2x+7=0\)
Xét \(\Delta=\left(-2\right)^2-4.1.7=4-28=-24\)
=> Phương trình vô nghiệm \(\left(\Delta< 0\right)\)
b) Theo hệ thức Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-\left(-2\right)}{1}=2\\x_1.x_2=\dfrac{m}{1}\end{matrix}\right.\)
Xét \(\Delta=\left(-2\right)^2-4.1.m=4-4m\)
Để phương trình có nghiệm thì \(\Delta\ge0\)
\(\Leftrightarrow4-4m\ge0\\ \Leftrightarrow-4m\ge-4\\ \Leftrightarrow m\le1\)
Theo đề bài, ta có:
\(x^2+y^2=5\\ \Leftrightarrow x^2+y^2+2xy-2xy=5\\ \Leftrightarrow\left(x+y\right)^2-2xy=5\\ \Leftrightarrow2^2-2m=5\\ \Leftrightarrow4-2m=5\\ \Leftrightarrow2m=-1\\ \Leftrightarrow m=-\dfrac{1}{2}\)