K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 3 2022

BPT đã cho vô nghiệm khi và chỉ khi: \(x^2-mx+m+3\ge0\) nghiệm đúng với mọi x

\(\Rightarrow\left\{{}\begin{matrix}a=1>0\\\Delta=m^2-4\left(m+3\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow m^2-4m-12\le0\)

\(\Rightarrow-2\le m\le6\)

29 tháng 1 2018

14 tháng 3 2018

Chọn C.

Bài 3: Tìm m để bất phương trình: x2 - 2x + 1 - m2 ≤ 0 nghiệm đúng với ∀x ∈ [1; 2].                 Bài 4: Tìm m để bất phương trình: (m - 1)x2 + (2 - m)x- 1 > 0 có nghiệm đúng với mọi∀x ∈ (1; 2).                                                                                                                                     Bài 5: Tìm m để bất phương trình: 3(m - 2)x2 + 2(m + 1)x + m - 1 < 0 có nghiệm đúngvới mọi ∀x ∈ (-1; 3).                             ...
Đọc tiếp

Bài 3: Tìm m để bất phương trình: x2 - 2x + 1 - m2 ≤ 0 nghiệm đúng với ∀x ∈ [1; 2].                 Bài 4: Tìm m để bất phương trình: (m - 1)x2 + (2 - m)x- 1 > 0 có nghiệm đúng với mọi∀x ∈ (1; 2).                                                                                                                                     Bài 5: Tìm m để bất phương trình: 3(m - 2)x2 + 2(m + 1)x + m - 1 < 0 có nghiệm đúngvới mọi ∀x ∈ (-1; 3).                                                                                                                          Bài 6: Tìm m để bất phương trình m2 - 2mx + 4 > 0 có nghiệm đúng với mọi ∀x ∈ (-1;0,5)

2

3:

x^2-2x+1-m^2<=0

=>(x-1)^2-m^2<=0

=>(x-1)^2<=m^2

=>-m<=x-1<=m

=>-m+1<=x<=m+1

mà x thuộc [-1;2]

nên -m+1>=-1 và m+1<=2

=>-m>=-2 và m<=1

=>m<=2 và m<=1

=>m<=1

14 tháng 10 2018

Do x = 2 là nghiệm của bất phương trình đã cho nên:

⇔ 2m + 2 < 2 + 3 + m

⇔ 2m – m < 2 + 3- 2

⇔ m < 3

Chọn đáp án B

9 tháng 5 2021

a, khi m=3 => pt: x^2-3x=0<=>x(x-3)=0<=>x=0 hoặc x=3

b,để pt có 2nghiem khi \(\Delta\)\(\ge\)0<=>(-m)^2-4.(3-m)\(\ge\)0<=>m^2-12+4m\(\ge\)0

<=>(m-2)(m+6)\(\ge\)0<=>m\(\ge\)2 và m\(\le\)-6 thì pt có 2 nghiệm

theo vi et=>x1+x2=m , x1.x2=3-m

vì x1 là nghiệm phương trình nên ta có: x1^2-m.x1+3-m=0

<=>x1^2=m.x1-3+m

có (x1^2+3)(x2+1)=12<=>(m.x1+m)(x2+1)=12<=>

m.x1.x2+m.x1+m.x2+m-12=0<=>m.(3-m)+m(x1+x2)+m-12=0

<=>m.(3-m)+m^2+m-12=0<=>3m-m^2+m^2+m-12=0

<=>4m=12<=>m=3(thỏa mãn)

vậy....

 

9 tháng 5 2021

a, Thay m = 3 => \(x^2-3.x+3-3=0\Leftrightarrow x^2-3x=0\Leftrightarrow x\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

NV
3 tháng 3 2022

a. Với \(m=0\Rightarrow-x-1=0\Rightarrow x=-1\) pt có nghiệm (ktm)

Với \(m\ne0\) pt vô nghiệm khi:

\(\Delta=\left(m-1\right)^2-4m\left(m-1\right)< 0\)

\(\Leftrightarrow\left(m-1\right)\left(-3m-1\right)< 0\)

\(\Rightarrow\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\)

b. Phương trình có 2 nghiệm trái dấu khi \(ac< 0\)

\(\Leftrightarrow m\left(m-1\right)< 0\Rightarrow0< m< 1\)

c. Từ câu a ta suy ra pt có 2 nghiệm khi \(\left\{{}\begin{matrix}m\ne0\\-\dfrac{1}{3}\le m\le1\end{matrix}\right.\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{1-m}{m}\\x_1x_2=\dfrac{m-1}{m}\end{matrix}\right.\)

\(x_1^2+x_2^2-3>0\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-3>0\)

\(\Leftrightarrow\left(\dfrac{1-m}{m}\right)^2-2\left(\dfrac{m-1}{m}\right)-3>0\)

Đặt \(\dfrac{m-1}{m}=t\Rightarrow t^2-2t-3>0\Rightarrow\left[{}\begin{matrix}t>3\\t< -1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\dfrac{m-1}{m}>3\\\dfrac{m-1}{m}< -1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\dfrac{-2m-1}{m}>0\\\dfrac{2m-1}{m}< 0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}-\dfrac{1}{2}< m< 0\\0< m< \dfrac{1}{2}\end{matrix}\right.\)

Kết hợp điều kiện có nghiệm \(\Rightarrow\left[{}\begin{matrix}-\dfrac{1}{3}\le m< 0\\0< m< \dfrac{1}{2}\end{matrix}\right.\)

19 tháng 11 2021

 Để phương trình x squared minus m x plus m plus 3 equals 0 có 2 nghiệm dương phân biệt thì:

Hỏi đáp VietJack

25 tháng 11 2017

∆ = m 2 – 4 (n – 3) = m 2 – 4n + 12

Phương trình đã cho có hai nghiệm x 1 ;   x 2 ⇔ ∆ ≥ 0 ⇔ m 2 – 4 n + 12   ≥ 0

Áp dụng định lý Vi-ét ta có x 1 + x 2 = −   m ;   x 1 . x 2 = n – 3

Ta có:

x 1 − x 2 = 1 x 1 2 − x 2 2 = 7 ⇔ x 1 − x 2 2 = 1 x 1 − x 2 x 1 + x 2 = 7 ⇔ x 1 + x 2 2 − 4 x 1 . x 2 = 1 x 1 + x 2 = 7     ⇔ 49 − 4 x 1 . x 2 = 1 x 1 + x 2 = 7 ⇔ x 1 . x 2 = 12 x 1 + x 2 = 7 ⇔ n − 3 = 12 − m = 7 ⇔ m = − 7 n = 15   

Thử lại ta có: ∆ = ( − 7 ) 2 – 4.15 + 12 = 1 > 0 (tm)

Vậy m = −7; n = 15

Đáp án: C