Bài 8. Cho ABC biết AB = 3cm, AC = 4cm, BC = 5cm. Trên tia đối của tia AC lấy điểm D sao cho AD =AC a) Chứng minh tam giác ABC vuông b) Chứng minh BCD cân
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
1 tháng 4 2021
a)Xét tam giác ABC vuông tại A có:
\(BC^2=AB^2+AC^2\) (ĐL Pytago)
\(5^2=3^2+AC^2\)
25=9+\(AC^2\)
25-9=\(AC^2\)
\(AC^2\)=16
Vậy...
b)góc BAC=góc DAC(2 góc này ở vị trì kề bù)
Xét tam giác BAC và tam giác DAC có:
BC=AD(gt)
góc BAC=góc DAC(cmt =90độ )
AC cạnh chung
\(\Rightarrow\Delta ABC=\Delta ADC\)(2 cgv)
\(\Rightarrow BC=DC\)(..)(1)
và góc B= góc D(...)(2)
Từ (1) và(2)có tam giác BCD cân tại C
a, Ta có
\(BC^2=AB^2+AC^2\Rightarrow25=16+9\)( luôn đúng )
Vậy tam giác ABC vuông tại A
b, Xét tam giác BCD có
BA là đường cao
lại có AD = AC => A là trung điểm
=> BA là đường trung tuyến
Vậy tam giác BCD cân tại B
a. Ta có:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow5^2=3^2+4^2\)
\(\Leftrightarrow25=25\left(đúng\right)\)
\(\Rightarrow\) Tam giác ABC vuông tại A
b.Xét tam giác CBA và tam giác DAB, có:
AD = AC ( gt )
góc BAC = góc DAB ( = 90 độ )
AB: cạnh chung
Vậy tam giác CBA = tam giác DAB ( c.g.c )
=> góc BCA = góc BDA ( 2 góc tương ứng )
=> Tam giác BCD cân tại B