K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi a(bạn) là số học sinh của lớp 9A(Điều kiện: \(a\in Z^+\))

Gọi b(bạn) là số học sinh của lớp 9B(Điều kiện: \(b\in Z^+\))

Vì khi chuyển ba học sinh từ 9A sang lớp 9B thì số học sinh hai lớp bằng nhau nên ta có phương trình:

\(a-3=b+3\)

\(\Leftrightarrow a-3-b-3=0\)

\(\Leftrightarrow a-b-6=0\)

hay a-b=6(1)

Vì khi chuyển 5 học sinh từ 9B sang lớp 9A thì số học sinh lớp 9B bằng \(\dfrac{11}{19}\)số học sinh lớp 9A nên ta có phương trình:

\(b-5=\dfrac{11}{19}\cdot\left(a+5\right)\)

\(\Leftrightarrow b-5-\dfrac{11}{19}a-\dfrac{55}{19}=0\)

\(\Leftrightarrow\dfrac{-11}{19}a+b=\dfrac{150}{19}\)(2)

Từ (1) và (2) ta lập được hệ phương trình:

\(\left\{{}\begin{matrix}a-b=6\\-\dfrac{11}{19}a+b=\dfrac{150}{19}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{8}{19}a=\dfrac{264}{19}\\a-b=6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=33\left(nhận\right)\\b=a-6=33-6=27\left(nhận\right)\end{matrix}\right.\)

Vậy: Số học sinh lớp 9A là 33 bạn

Số học sinh lớp 9B là 27 bạn

1 tháng 2 2018

giúp mk vs