K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2021

Giá trị lớn nhất là 2/17

29 tháng 8 2021

\(\dfrac{2}{17}\)

29 tháng 8 2021

Giá trị nhỏ nhất là căn 82

29 tháng 8 2021

\(\dfrac{1}{3}\)

10 tháng 2 2023

không biết :))))

30 tháng 12 2021

\(5x^2+2xy+2y^2-\left(4x^2+4xy+y^2\right)=\left(x-y\right)^2\ge0\\ \Leftrightarrow5x^2+2xy+2y^2\ge4x^2+4xy+y^2=\left(2x+y\right)^2\)

\(\Leftrightarrow P\le\dfrac{1}{2x+y}+\dfrac{1}{2y+z}+\dfrac{1}{2z+x}=\dfrac{1}{9}\left(\dfrac{9}{x+x+y}+\dfrac{9}{y+y+z}+\dfrac{9}{z+z+x}\right)\\ \Leftrightarrow P\le\dfrac{1}{9}\left(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{y}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{1}{z}+\dfrac{1}{z}+\dfrac{1}{x}\right)\\ \Leftrightarrow P\le\dfrac{1}{9}\left(\dfrac{3}{x}+\dfrac{3}{y}+\dfrac{3}{z}\right)=\dfrac{1}{3}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=1\)

Dấu \("="\Leftrightarrow x=y=z=1\)

30 tháng 12 2021

Em cảm ơn anh ạ! 

Anh giúp em ạ! 

https://hoc24.vn/cau-hoi/cho-abc-la-cac-so-duong-cmr-dfraca2bcdfracb2cadfracc2abgedfracabc2.4139278814936

NV
22 tháng 3 2022

\(1=x+y+3xy\le x+y+\dfrac{3}{4}\left(x+y\right)^2\)

\(\Rightarrow3\left(x+y\right)^2+4\left(x+y\right)-4\ge0\)

\(\Rightarrow3\left(x+y+2\right)\left(x+y-\dfrac{2}{3}\right)\ge0\)

\(\Rightarrow x+y\ge\dfrac{2}{3}\) \(\Rightarrow\dfrac{1}{x+y}\le\dfrac{3}{2}\)

Đồng thời: \(x^2+y^2\ge\dfrac{1}{2}\left(x+y\right)^2\ge\dfrac{1}{2}.\left(\dfrac{2}{3}\right)^2=\dfrac{2}{9}\)

\(\Rightarrow-\left(x^2+y^2\right)\le-\dfrac{2}{9}\)

Từ đó ta có:

\(A=\sqrt{1-x^2}+\sqrt{1-y^2}+\dfrac{1-\left(x+y\right)}{x+y}=\sqrt{1-x^2}+\sqrt{1-y^2}+\dfrac{1}{x+y}-1\)

\(A\le\sqrt{2\left[2-\left(x^2+y^2\right)\right]}+\dfrac{1}{x+y}-1\le\sqrt{2\left(2-\dfrac{2}{9}\right)}+\dfrac{3}{2}-1=\dfrac{3+8\sqrt{2}}{6}\)

Dấu "=" xảy ra khi \(x=y=\dfrac{1}{3}\)

29 tháng 8 2021

Giá trị nhỏ nhất là 3 căn 7 trên 2

29 tháng 8 2021

\(\dfrac{3\sqrt{17}}{2}\)

23 tháng 7 2023

a) \(\left\{{}\begin{matrix}a=x\\b=2y\\c=3z\end{matrix}\right.\Rightarrow a+b+c=2;a,b,c>0\)

\(\Rightarrow S=\sqrt{\dfrac{\dfrac{ab}{2}}{\dfrac{ab}{2}+c}}+\sqrt{\dfrac{\dfrac{bc}{2}}{\dfrac{bc}{2}+a}}+\sqrt{\dfrac{ca}{ca+2b}}\)

\(=\sqrt{\dfrac{ab}{ab+2c}}+\sqrt{\dfrac{bc}{bc+2a}}+\sqrt{\dfrac{ca}{ca+2b}}\)

Vì a,b,c>0 nên áp dụng BĐT AM-GM, ta có: 

 \(\sqrt{\dfrac{ab}{ab+2c}}=\sqrt{\dfrac{ab}{ab+\left(a+b+c\right)c}}=\sqrt{\dfrac{ab}{c^2+bc+ca+ab}}=\sqrt{\dfrac{ab}{\left(a+c\right)\left(b+c\right)}}\)

\(=\sqrt{\dfrac{a}{a+c}}.\sqrt{\dfrac{b}{b+c}}\le\dfrac{1}{2}\left(\dfrac{a}{a+c}+\dfrac{b}{b+c}\right)\) 

\(\sqrt{\dfrac{bc}{bc+2a}}=\sqrt{\dfrac{bc}{\left(b+a\right)\left(c+a\right)}}\le\dfrac{1}{2}\left(\dfrac{b}{a+b}+\dfrac{c}{a+c}\right)\)

\(\sqrt{\dfrac{ca}{ca+2b}}=\sqrt{\dfrac{ca}{\left(c+b\right)\left(a+b\right)}}\le\dfrac{1}{2}\left(\dfrac{c}{b+c}+\dfrac{a}{a+b}\right)\)

\(\Rightarrow S\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{b}{a+b}\right)+\dfrac{1}{2}\left(\dfrac{b}{b+c}+\dfrac{c}{b+c}\right)+\dfrac{1}{2}\left(\dfrac{a}{a+c}+\dfrac{c}{a+c}\right)=\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}=\dfrac{3}{2}\)

Dấu "=" xảy ra khi và chỉ khi: a=b=c=2/3=>\(\left(x,y,z\right)=\left\{\dfrac{2}{3};\dfrac{1}{3};\dfrac{2}{9}\right\}\)

AH
Akai Haruma
Giáo viên
10 tháng 12 2023

Lời giải:

Áp dụng BĐT AM-GM:
$M\geq 2\sqrt{\frac{1}{xy}}.\sqrt{1+x^2y^2}=2\sqrt{\frac{x^2y^2+1}{xy}}$
$=2\sqrt{xy+\frac{1}{xy}}$

Áp dụng BĐT AM-GM tiếp:

$1\geq x+y\geq 2\sqrt{xy}\Rightarrow xy\leq \frac{1}{4}$
$xy+\frac{1}{xy}=(xy+\frac{1}{16xy})+\frac{15}{16xy}$

$\geq 2\sqrt{xy.\frac{1}{16xy}}+\frac{15}{16xy}$

$\geq 2\sqrt{\frac{1}{16}}+\frac{15}{16.\frac{1}{4}}=\frac{17}{4}$

$\Rightarrow M\geq 2\sqrt{\frac{17}{4}}=\sqrt{17}$

Vậy $M_{\min}=\sqrt{17}$. Giá trị này đạt tại $x=y=\frac{1}{2}$